Abstract:
In one embodiment, a chip scale atomic sensor is provided. The chip scale atomic sensor includes a body that defines at least one sensing chamber. The body includes a thermal isolation die mounted to the body. The thermal isolation die is disposed in a location that communicates with the at least one sensing chamber. The thermal isolation die includes a substrate defining a frame portion and an isolated portion and a plurality of tethers mechanically coupling the isolated portion of the substrate to the frame portion. The thermal isolation die also includes an atomic source mounted on the isolated portion of the substrate, and a heating element mounted on the isolated portion and configured to heat the atomic source.
Abstract:
In some examples, a micro-electro-mechanical system (MEMS) optical accelerometer includes a housing comprising an internal chamber that includes a Fabry-Perot cavity and a proof mass affixed to the housing via one or more elastic elements, a light source configured to emit radiation, a first detector configured to receive radiation transmitted through the Fabry-Perot cavity and configured to generate one or more signals that indicate a position of the proof mass. The MEMS optical accelerometer further comprises an atomic wavelength reference and a second detector configured to detect radiation transmitted through the atomic wavelength reference and configured to generate one or more signals that indicate a wavelength of the radiation emitted by the light source, and a servomechanism electrically coupled to the second photo detector and the light source, configured to adjust the light source to maintain the radiation emitted by the light source at approximately a selected wavelength.
Abstract:
System and methods for a vacuum cell apparatus for an atomic sensor are provided. In at least one embodiment, the apparatus comprises a cell wall encircling an enclosed volume, the cell wall having a first open end and a second open end opposite from the first open end and a first panel over the first open end of the cell wall and having a first surface, the first surface facing the enclosed volume and having a first set of diffractive optics therein. Further, the apparatus comprises a second panel over the second open end of the cell wall and having a second surface, the second surface facing the enclosed volume and having a second set of diffractive optics therein; wherein the first set of diffractive optics and the second of diffractive optics are configured to reflect at least one optical beam within the enclosed volume along a predetermined optical path.
Abstract:
An inertial sensing system comprises a first multi-axis atomic inertial sensor, a second multi-axis atomic inertial sensor, and an optical multiplexer optically coupled to the first and second multi-axis atomic inertial sensors. The optical multiplexer is configured to sequentially direct light along different axes of the first and second multi-axis atomic inertial sensors. A plurality of micro-electrical-mechanical systems (MEMS) inertial sensors is in operative communication with the first and second multi-axis atomic inertial sensors. Output signals from the first and second multi-axis atomic inertial sensors aid in correcting errors produced by the MEMS inertial sensors by sequentially updating output signals from the MEMS inertial sensors.
Abstract:
A continuously tunable radio frequency (RF) sensor system is provided. The system includes a pump laser system that includes first and second pump lasers, at least one frequency modulator to modulate frequencies of first and second laser light from the pump lasers to first and second select frequencies, a switch system to selectively pass one of the first and second laser light, an amplifier to amplify the passed laser light, a frequency doubler to double the frequency of the amplified laser light to generate pump light. A laser source lock system is in communication with the pump laser system to ensure a frequency of the pump light is referenced to atoms in a vapor cell and provide a probe light. The pump light and probe light are transmitted through the vapor cell. A detector measures the probe light that passed through the vapor cell.
Abstract:
Systems and embodiments for an integrated photonics tensor magnetometer are described herein. In certain embodiments, a system includes a plurality of magnetometers. The system also includes a laser carrier wafer coupled to each of the plurality of magnetometers that commonly distributes one or more lasers to each of the magnetometers in the plurality of magnetometers. Additionally, the system includes a plurality of photodetectors that detect light emitted from the laser carrier wafer and the plurality of magnetometers. Further, the system includes one or more processors that execute computer-executable instructions that cause the processor to monitor and control operation of the one or more lasers and calculate a magnetic field gradient based on the detected light from the magnetometers.
Abstract:
A device includes a substrate and nanoscale fin formed from a first material, a RF emitter that emits energy in a range of radio frequencies, and a waveguide formed from a second material. The device further includes a bichromatic directional coupler configured to couple pump and probe laser light into the waveguide. The waveguide is positioned proximate to the nanoscale fin along a coupling length such that the pump laser light propagating within the waveguide is coupled into the nanoscale fin from evanescent wave overlap along the coupling length. The pump laser light causes the first material to absorb the probe laser light when energy emitted by the RF emitter is at one or more frequencies dependent on a magnetic field. The device further includes a processor configured to determine a magnetic field strength of the magnetic field based on an identification of the one or more frequencies.
Abstract:
A chip scale atomic clock (CSAC) includes a temperature stabilized physics system and a temperature stabilized electronics circuitry electrically coupled to the temperature stabilized physics system. Atomic clocks utilize an optical signal having a frequency component. The temperature stabilization increases frequency stability. The temperature stabilized physics system includes a vapor cell and a magnetic field coil, and is enclosed in a magnetic shield. When an ambient temperature of a chip scale atomic clock increases, fluid is extended away, due to thermal expansion, from at least one reservoir towards or away from a thermally isolated subsystem in at least one of the temperature stabilized electronics circuitry and the temperature stabilized physics system.
Abstract:
Systems and methods for eliminating multi-path errors from atomic inertial sensors are provided. In certain embodiments, a system for performing atom interferometry includes a vacuum cell containing multiple atoms and a first plurality of lasers configured to trap the atoms within the vacuum cell. The system further includes a second plurality of lasers configured to impart momentum to the atoms and direct the atoms down multiple paths, wherein a primary path in the multiple paths has a first and second component that converge at a converging point, wherein a diverging part of the primary path in which the first and second components are diverging is asymmetrical with respect to a converging part of the primary path in which the first and second components are converging, such that only the first and second components converge at the converging point wherein other paths do not converge at the converging point.
Abstract:
Waveguide includes fork with first and second bifurcated ends coupled to loop section and separated by angle determined based on velocities of portions of quantum mechanical wavefunction of atoms traveling above waveguide. Waveguide propagates blue-detuned laser having first evanescent field that repels atoms away from waveguide and red-detuned laser having second evanescent field that attracts atoms toward waveguide, together creating potential minimum/well. Laser cooling atoms, causing atoms positioned in potential minimum/well to move toward first fork section following potential minimum/well. Atomic state initialization section initializes atomic states of atoms to known ground-state configuration. Beam splitter section splits quantum mechanical waveform of each atom above surface of diverging waveguide into first portion at first velocity that travels into first end of first fork section into first loop section and second portion at second velocity that travels into second end of first fork section into first loop section.