Abstract:
A variable cycle engine may include a first cylinder that performs an intake, a compression, an explosion, or an exhaust stroke, a second cylinder that performs an intake, a compression, an explosion, or an exhaust stroke, a connection rail that is formed near the first cylinder and the second cylinder, a first variable port that is diverged from one side of the connection rail and is connected to the first cylinder, a second variable port that is diverged from the other side of the connection rail and is connected to the second cylinder, and a first variable control valve disposed on the first variable port and a second variable control valve disposed on the second variable port, wherein the first and second variable control valves are opened or closed accordingly with respect to each other to directly connect the first cylinder with the second cylinder.
Abstract:
A cylinder de-activation control method and a cylinder de-activation system are disclosed. A cylinder de-activation control method of an engine having an odd number of cylinders may include: receiving operation state signals of a vehicle; determining whether the operation state signals correspond to a CDA mode driving region of a CDA apparatus; preparing a CDA driving mode of the CDA apparatus when the operation state signals correspond to the CDA mode driving region; and performing a CDA mode conversion on each cylinder.
Abstract:
The present disclosure relates to an engine provided with cylinder deactivation (“CDA”) apparatuses for at least some engine cylinders and provided with a water pump, and a method for controlling the same. The method for controlling the engine includes a controller: determining, based on output signals from vehicle driving information sensors, whether or not a current vehicle driving state corresponds to a CDA driving region; operating CDA apparatuses of some of the cylinders when the current vehicle driving state corresponds to the CDA driving region; determining whether or not detonation border lines (“DBLs”) of respective cylinders the CDA apparatuses of which are not operated precede a minimum spark advance for best torque (“MBT”); and, when the DBLs precede the MBT, operating corresponding water injecting nozzles so as to inject water into the respective cylinders.
Abstract:
A variable valve lift apparatus to vary lift of a valve disposed at an engine may include an outer body selectively making a lever motion according to rotation of a cam, being adapted such that the valve is connected with one end thereof and a pivot axis of the lever motion is disposed at another end thereof, and forming an inside space, an inner body disposed in the inside space of the outer body and adapted such that one end thereof is rotatably connected with the one end of the outer body, a connecting shaft disposed so as to penetrate the one end of the outer body and the one end of the inner body and connect the outer body with the inner body, and a lost motion spring provided so as to return the inner body which is relatively rotated with the outer body around the connecting shaft.
Abstract:
A camshaft-in-camshaft apparatus may include a hollow outer shaft having at least one slot formed along a length direction of the hollow outer shaft, an inner shaft rotatably inserted inside the outer shaft and having at least one pin hole formed on the inner shaft, a position of each of the at least one pin hole corresponding to that of each of the at least one slot, one or more first cam lobes fixedly mounted on an exterior circumference of the outer shaft, one or more second cam lobes fixedly mounted on the inner shaft to be rotatable on the corresponding slot of the outer shaft, a cam phaser changing a phase angle between the outer shaft and the inner shaft by rotating any one of the outer shaft and the inner shaft, and at least one torsional spring mounted between any one of the one or more first cam lobes and any one of the one or more second cam lobes.
Abstract:
A variable valve lift apparatus may include an outer body, an inner body inserted in the outer body to move up and down in the outer body, a valve cylinder inserted in the outer body on a lower side of the inner body to have one side coupled to the inner body and the other side coupled to the valve, a latching member provided either to the outer body or to the inner body to be operated by a hydraulic pressure for coupling to the outer body and the inner body selectively, a hydraulic chamber formed between the outer body and the inner body, a latching flow passage formed in the outer body to supply the hydraulic pressure to the latching member, and an oil removal valve provided to drain a fluid.
Abstract:
A multiple variable valve lift apparatus may include a camshaft rotating by drive of an engine, at least two cam portions disposed on the camshaft to be movable along an axial direction of the camshaft and to be rotated together with the camshaft, and forming a high cam and a low cam, a valve opening/closing unit operated by one of the high cam or the low cam formed at the cam portion, an operating unit disposed on the camshaft to move together with one of the at least two cam portions, a solenoid selectively moving the operating unit along an axial direction of the camshaft, a interlock unit rotating together with the camshaft, and disposed between one and the other of the cam portions on the camshaft to be movable along an axial direction of the camshaft, and a pin operating unit selectively moving the interlock unit along the camshaft.
Abstract:
An apparatus and method for controlling deactivation of cylinders in an engine may include a sensor that measures pressure inside an intake manifold of the engine, an oil control valve (OCV) that deactivates the cylinders in the engine, and a controller that is configured to control the OCV to deactivate a specific cylinder in the engine, based on the pressure inside the intake manifold.
Abstract:
A variable valve device for varying a lift amount of a valve includes a first valve and a second valve that are respectively disposed to open or close a port, a swing arm in which first and second valve pressing portions are formed at both sides to press the first valve and the second valve, one supporting portion that supports a part that is apart from the first and the second valve pressing portions on the swing arm, a lost body that is rotatably disposed on the swing arm through a lost pin, a camshaft on which a first cam and a second cam are formed to respectively press the lost body and the swing arm, and a latching pin that selectively fixes the swing arm with the lost body and is disposed to move in a direction that the first and the second valves are arranged.
Abstract:
A multiple variable valve lift apparatus has a simple design that efficiently operates without interference. The apparatus according may include: a camshaft formed in a hollow cylinder shape; a control shaft disposed in the hollow of the camshaft; a cam that rotates together with the camshaft; a cam rod connecting the control shaft with the cam to move together; an operating unit disposed on the exterior circumference of the camshaft to rotate together with the camshaft; an operating unit rod connecting the control shaft with the operating unit such that the control shaft and the operating unit move together; a solenoid selectively connected with the operating unit, and moving the operating unit along an axial direction of the camshaft; and a tappet contacting the cam to transform rotational motion of the cam to rectilinear motion of a valve.