Abstract:
A fuel reforming system includes: an engine combusting reformed gas to generate mechanical power; an intake line connected to the engine to supply the reformed gas and air to the engine; an exhaust line connected to the engine to circulate the exhaust gas discharged from the engine; a fuel reformer provided at an exhaust gas recirculation (EGR) line diverging from the exhaust line; and a catalyst disposed at the exhaust line and purifying nitrogen oxide included in the exhaust gas at a front end of the fuel reformer. In particular, the fuel reformer mixes the fuel with the EGR gas which is a part of the exhaust gas and passes through the EGR line, and reforms the fuel mixed in the EGR gas.
Abstract:
A reforming system may include an engine combusting reformed gas to generate mechanical power, an intake line connected to the engine to supply reformed gas and air to the engine, an exhaust line connected to the engine to circulate exhaust gas exhausted from the engine, a reformer provided at an exhaust gas recirculation (EGR) line diverging from the exhaust line and mixing the exhaust gas with fuel to reform the fuel mixed with the exhaust gas, a temperature sensor provided in the reformer and measuring temperature of the reformer, and a reforming controller determining whether the reformer operates or not based on driving condition of the engine and temperature of the reformer.
Abstract:
A thermoelectric generating system may include a base substrate configured to be installed at a side of a vehicle exhaust line part; and at least one thermoelectric module configured to be installed on a top surface of the base substrate, in which a side of the exhaust line part is provided with an opening communicating with an internal space of the exhaust line part, the base substrate is installed to seal the opening of the exhaust line part, and the base substrate is made of a thermal conductive material and a surface of the base substrate is formed with an insulating layer.
Abstract:
An exhaust manifold for a vehicle configured for improving fuel efficiency of the vehicle by improving fluidity of exhaust gas may include a manifold body having a plurality of inlet portions which are outwardly extended and an outlet portion which is outwardly extended, wherein the manifold body may have a flat surface formed on at least a portion of a top surface thereof.
Abstract:
A thermoelectric generating system for a vehicle, the thermoelectric generating system includes an engine for producing power, a thermoelectric module for producing electric energy from thermal energy of an exhaust gas generated by the engine, a purifying device for purifying the exhaust gas generated by the engine, and a controller for driving the thermoelectric module when a temperature of the purifying device arrives at a predetermined operational temperature.
Abstract:
An exhaust system for a vehicle includes a heat insulation coating layer formed on an inner wall surface of an exhaust gas flow tube through which exhaust gas passes. The heat insulation coating layer includes an inorganic binder including two or more silicon-based compounds and an aerogel dispersed in the inorganic binder, includes 5 to 50 parts by weight of the aerogel for 100 parts by weight of the inorganic binder, and has heat conductivity of at most 1.0 W/mK, measured by ASTM E1461.
Abstract:
A thermoelectric power generation apparatus includes a heat transfer module configured to be attached to an exhaust manifold or an exhaust pipe; a thermoelectric module configured to be supplied with heat from the heat transfer module; and a cooling module configured to absorb heat from the thermoelectric module. Thus, it is possible to implement a thermoelectric power generation system in the vehicle without changing a shape of an exhaust system and a shape of the thermoelectric module.
Abstract:
A volume measuring structure for a cylinder block and a cylinder head for an engine includes: a cylinder block configured to form a frame of the engine and include a cylinder in which a piston reciprocates to generate power; a cylinder head configured to be mounted on the cylinder block to form a combustion chamber along with the cylinder and include an ignition plug which ignites the engine and a valve which opens and closes intake and exhaust passages; a first pressure sensor configured to be mounted in the cylinder block to determine a volume of the cylinder block; and a second pressure sensor configured to be mounted in the cylinder head to determine a volume of the cylinder head.
Abstract:
A fuel reforming system for a vehicle intake and exhaust line that reforms fuel in a vehicle intake and exhaust line including an exhaust gas recirculation (EGR) apparatus that recirculates a portion of an exhaust gas of an engine and a recirculation line that transfers an exhaust gas that is recirculated by the exhaust gas recirculation apparatus to supply as an intake gas of the engine, may include a fuel reformer that mixes an exhaust gas that passes through the recirculation line with fuel and that reforms fuel that is mixed in the exhaust gas, wherein an insulation material is coated at a wall surface of the fuel reformer.
Abstract:
The present disclosure provides an amplifier for vehicle, vehicle including the amplifier, and method for controlling the amplifier for vehicle, which uses a 48 volt (V) battery voltage and adjusts speaker output according to variable audio signals, thereby minimizing the size of the amplifier, reducing conversion loss of a Direct Current (DC)-to-DC converter, and increasing output efficiency. In accordance with one aspect of the present disclosure, An amplifier for vehicle includes a first input port for receiving a first voltage; a second input port for receiving a second voltage lower than the first voltage; at least one power Integrated Chip (power IC) connected to a speaker for using a voltage received from the first input port; and a controller for controlling the power IC using a voltage received from the second input port.