Abstract:
A beamforming method and a beamforming apparatus for directional signal transmission are provided, wherein a multiple antenna beamformer is configured to conduct a data transmission to a beamformee.
Abstract:
An apparatus and a method for providing an efficient multi-client access in a WLAN, the method comprising the step of: when the number of clients exceeds a threshold, creating at least two virtual access points (VAP1, VAP2, VAP3); load balancing by distributing workloads across the created at least two virtual access points; and dynamically allocating at least one quality of service parameter (e.g., timeslots, AIFS, TXOP, maximum and minimum contention window) to each of the created at least two virtual access points.
Abstract:
This application relates to the field of communications technologies, in particular Wireless Local Area Network technologies, and provides a method and apparatus for reducing a peak to average power ratio (PAPR) for transmitting a physical layer protocol data unit (PPDU), in particular reducing the PAPR for the U-SIG field. Methods are disclosed for both an access point (AP) and stations (STA).
Abstract:
An antenna device includes a plurality of dipole antennas and a port. Each of the dipole antennas is connected to the port. The plurality of dipole antennas is arranged around the port. Each of the plurality of dipole antennas includes two ends. The ends of the dipole antennas are arranged in a plurality of pairs. Each pair includes one end of one of the dipole antennas and one end of another one of the dipole antennas. The two ends in each pair are arranged in proximity to each other. One or more switches are configured to switch between (1) an omnidirectional state, in which the ends of the dipole antennas are not connected to each other; and (2) a directional state, in which the two ends in each of one or more of the pairs are connected to each other.
Abstract:
A radio station, in particular an access point, for client localization in a multipath indoor environment is disclosed. The radio station comprises: a circular antenna array comprising uniform circularly arranged antenna elements; and a processor configured to: transform first input data from the circular antenna array into second input data using a transform that transforms the first steering vector of the circular antenna array into a second steering vector of a virtual linear antenna array; and transform the second input data into third input data by using a transform that transforms the second steering vector of the virtual linear antenna array into a third steering vector of a second virtual linear antenna array, comprising a larger number of antenna elements than the virtual linear antenna array; and determine an angle of arrival based on the third input data.
Abstract:
A device resolves a collision between its transmission and a simultaneous transmission of another device. The device is configured to interrupt its transmission, determine a negotiation signal, and determine at least one available resource to occupy with the negotiation signal during a negotiation period. Further, the device is configured to transmit the negotiation signal on the at least one available resource and simultaneously receive a negotiation signal on another resource from at least one other device during the negotiation period. Then, the device is configured to decide, based on all negotiation signals, whether to retransmit the interrupted transmission after the negotiation period.
Abstract:
An antenna for a wireless communication device, such as a Wi-Fi access point is provided. The antenna includes an electrically conductive radiation structure including a plurality of radially extending radiation slots, each of which has an open outer end at a perimeter of the electrically conductive radiation structure and defines a respective radiation portion of the electrically conductive radiation structure. The antenna includes a feeding network configured to feed an RF signal to the electrically conductive radiation structure, the feeding network includes a plurality of feeding arms configured to feed the RF signal into each radiation portion of the electrically conductive radiation structure for exciting each radiation portion to emit electromagnetic waves. The antenna includes a grounding structure including an electrically conductive grounding surface, which is spaced from and faces each radiation portion of the electrically conductive radiation structure for guiding the electromagnetic waves emitted by each radiation portion.
Abstract:
A radio frequency (RF) front end for wireless communications, in particular for use in a half duplex (HD) and/or full duplex (FD) transceiver. The RF front end is based on a quadrature balanced power amplifier (QBPA). The RF front end includes an antenna port for outputting a transmit signal to and receiving a receive signal from an antenna, and a receive port for outputting the receive signal to a signal processing section. Further, the QBPA is configured to receive a transmit input signal at a first port, receive a cancellation input signal at a fourth port, and receive the receive signal at a second port coupled to the antenna port.
Abstract:
A midamble indication method includes sending, by a first device, midamble indication information to a second device. A duration of a midamble indicated by the midamble indication information is greater than or equal to a threshold. The threshold is related to a processing capability of the second device. In a midamble receiving method, the second device receives the midamble according to the indication information.
Abstract:
A method for transmitting information, a station, and an access point in a MU-MIMO system includes: determining, by a first station, multiple to-be-sent first long training sequences, where the multiple first long training sequences include at least one pilot for phase tracking; and sending, by the first station, the multiple first long training sequences to an access point on multiple symbols, where a second station sends multiple second long training sequences to the access point on the multiple symbols, the multiple second long training sequences include at least one pilot for phase tracking, and a first pilot for phase tracking and a second pilot for phase tracking occupy different time-frequency resources, where the at least one pilot for phase tracking included in the multiple first long training sequences includes the first pilot for phase tracking.