Abstract:
Systems, apparatus, user equipment (UE), evolved node B (eNB), computer readable media, and methods are described for scheduling of multiple uplink transmissions in unlicensed spectrum. One embodiment involves receiving, at an eNB, a first uplink scheduling request from a UE, scheduling a plurality of uplink subframes on the unlicensed channel in response to the first uplink scheduling request, and initiating transmission of a first subframe to the first UE in response to the scheduling of the plurality of uplink subframes, wherein the first subframe comprises one or more downlink control indicators (DCIs) allocating the plurality of uplink subframes to the first UE.
Abstract:
Techniques for contention window size (CWS) adaptation (CWSA) are discussed. One example apparatus can comprise a processor that can receive HARQ messages UEs in response to PDSCH transmissions in one or more reference subframes. The HARQ messages can comprise HARQ-ACK values that denote a HARQ-ACK state for a transport block associated with License Assisted Access (LAA) operation, wherein each of the HARQ-ACK states is one of a DTX state, an ACK state, a NACK state, or an “any” state. The processor can also; determine a metric value for each of the HARQ-ACK states; calculate a CWS adjustment metric based on the determined metric values; increase a CWS to a next higher allowed value when the CWS adjustment metric is greater than or equal to a threshold; and reset the CWS to a minimum allowed value when the CWS adjustment metric is less than the threshold.
Abstract:
Described are mechanisms for eNB support of DRS in LAA, in which DRS is transmitted at one or more DRS occasions within a DMTC window, subject to LBT. In some embodiments, an eNB may include hardware processing circuitry comprising an antenna port, a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to determine a DMTC window of a wireless communication channel. The second circuitry may be operable to initiate one or more CCA checks through an antenna coupled to the antenna port prior to a DRS occasion within a DMTC time window. The third circuitry may be operable to initiate a DRS transmission through the antenna within the DMTC window upon a CCA check of the set of one or more CCA checks sensing that the wireless communication channel is idle. Also described are mechanisms for proactive support of DRS in LAA.
Abstract:
An eNodeB (eNB), user equipment (UE) and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE receives allocation of orthogonal multiple access (OMA) and non-OMA (NOMA) resources. The UE transmits data up to a maximum NOMA rate and NOMA Modulation and Coding Scheme (MCS) using the NOMA resources without receiving an explicit transmission grant from the eNB. The eNB may allocate multiple NOMA regions associated with different maximum rates, MCSs, number of UEs, UE types, applications and sizes. If the data exceeds the NOMA conditions or the UE is unable to transmit data using the allocated NOMA resources or does not receive an acknowledgement from the eNB regarding reception of the transmitted data, the UE may request an explicit grant of the OMA resources from the eNB and, upon receiving an allocation of the OMA resources, subsequently transmit the data using the allocated OMA resources.
Abstract:
Disclosed in some examples are systems, machine-readable media, methods, and cellular wireless devices which implement a Listen-Before-Talk (LBT) access scheme for a device operating according to a cellular wireless protocol in an unlicensed channel. A cellular wireless device may utilize the cellular wireless protocol in the unlicensed channel after the LBT access scheme has determined that a channel (a defined range of frequencies) in the unlicensed channel is idle for a particular period of time.
Abstract:
An enhanced NodeB (eNB), user equipment (UE) and communication methods therebetween using an unlicensed channel of an unlicensed band are generally described. The eNB measures an interference power level (IPL) of the unlicensed channel at the eNB and determine a transmit power level (TPL) for a downlink transmission based on the IPL, the TPL decreasing with increasing IPL. Feedback including unlicensed channel conditions measured by the UE is used by the eNB to determine the UE-eNB proximity. The eNB determines whether to transmit the downlink transmission to the UE based on the IPL and the proximity; as the IPL increases, the eNB services increasingly proximate UEs until, when the IPL exceeds a predetermined threshold, the eNB does not service any UE using the unlicensed channel. The eNB schedules and transmits the downlink transmission to the UE using the transmit power level.
Abstract:
Methods, systems, and devices for modulation and coding scheme selection and configuration. A mobile communication device includes a table component, a table selection component, and a communication component. The table component is configured to maintain two or more tables each having entries for a plurality of available modulation schemes. The two or more tables include a default table and a secondary table. The default table and the secondary table have a matching number of entries, and the secondary table includes an entry corresponding to a 256-QAM scheme. The table selection component is configured to select a selected table from one of the default table and the secondary table. The communication component is configured to receive and process a communication from a base station based on a modulation and coding scheme of the selected table.
Abstract:
Disclosed in some examples are systems, machine-readable media, methods, and cellular wireless devices which implement a Listen-Before-Talk (LBT) access scheme for a device operating according to a cellular wireless protocol in an unlicensed channel. A cellular wireless device may utilize the cellular wireless protocol in the unlicensed channel after the LBT access scheme has determined that a channel (a defined range of frequencies) in the unlicensed channel is idle for a particular period of time.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beam tracking For example, an apparatus may include a transmitter to transmit data to a wireless communication device via a first beam direction of a plurality of beam directions, and to transmit one or more pilot signals via one or more other beam directions of the plurality of beam directions; and a receiver to receive from the wireless communication device a feedback indicating a second beam direction of the plurality of beam directions, the second beam direction being one of the one or more other beam directions, wherein the transmitter is to switch to the second beam direction to communicate with the wireless communication device.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (UE) and an evolved Node B (eNB). A UE may signal, to an eNB, a capability of the UE to communicate in an unlicensed band. The UE may communicate one or more measurements to the eNB associated with the unlicensed band. Based on the one or more measurements, the eNB may activate and configure communication with the UE through the unlicensed band. Other embodiments may be described and/or claimed.