Abstract:
WTRUs, ARSs, APs, WLG/AAA proxies, networks, and methods thereon are disclosed for fast security setup on a multi-RAT WTRU. Methods of sharing security associations between RATs on a multi-RAT WTRU are disclosed. Methods of caching security associations are disclosed. Methods are disclosed for alerting an ANDSF server of an AP that should be considered for association. Enhancements to advertisements from an AP are disclosed where the advertisements may include SSID with a FQDN, a HESSID type information, or TAI type information. Methods of resolving AP identities to a reachable address are disclosed. An address resolution protocol is disclosed for resolving AP identities. ARSs are disclosed that may resolve a BSSID to a network routable address. Protocols for carrying AP identities and security parameters are disclosed. Methods are disclosed of using ANDSF to provide the WTRU with security information and parameters of an AP. An RSN may indicate security capabilities.
Abstract:
A dynamic spectrum management (DSM) engine may determine the channel quality of one or more channels associated with the DSM engine when packets are not being transmitted over the channels. For example, the DSM engine may trigger a channel quality measurement on a non-primary channel on a condition that a predetermined period of time has lapsed since the last activity associated with the non-primary channel. Channel quality measurement may be triggered via a data sending event on the non-primary channel such as sending a data frame on the non-primary channel. The DSM engine may perform respective quality measurements on multiple channels and store the respective quality values in a database. Time-averaged channel qualities for the channels may be computed based on the stored quality values for computing transmit power distribution of across the channels.
Abstract:
A method for sensing measurement gap scheduling includes allocating a new supplementary carrier in a license-exempt spectrum by a radio resource management (RRM) entity in an evolved Node B (eNB); configuring a local cognitive sensing entity in the eNB by the RRM entity; configuring a wireless transmit/receive unit (WTRU) for cognitive sensing through radio resource control (RRC) signaling, the RRC signaling being generated by the eNB; configuring a local cognitive sensing entity at the WTRU by a dynamic spectrum management (DSM) entity; and signaling a start and a duration of a measurement gap to an enhanced sensing component.
Abstract:
Described herein are methods, metrics and apparatus for bandwidth allocation for cognitive radio. Information that needs to be passed between different components of a dynamic spectrum management (DSM) system for dynamic bandwidth allocation along with the corresponding interfaces is identified. Methods and associated metrics for measuring network performance, evaluating channel sensing results and handling various bandwidth allocation scenarios are presented. Also provided is an admission control mechanism for quality of service support. Alternate channel monitoring may be performed in the background so that when a new channel is needed, an alternate channel may be immediately allocated and service disruption to the DSM system is reduced. A channel may be dynamically assigned as the primary channel in multiple channel scenarios to support tasks such as transmission of acknowledgment frames. Hybrid mode devices that may access a television white space (TVWS) database and perform spectrum sensing are also described.
Abstract:
A method for sensing measurement gap scheduling includes allocating a new supplementary carrier in a license-exempt spectrum by a radio resource management (RRM) entity in an evolved Node B (eNB); configuring a local cognitive sensing entity in the eNB by the RRM entity; configuring a wireless transmit/receive unit (WTRU) for cognitive sensing through radio resource control (RRC) signaling, the RRC signaling being generated by the eNB; configuring a local cognitive sensing entity at the WTRU by a dynamic spectrum management (DSM) entity; and signaling a start and a duration of a measurement gap to an enhanced sensing component.
Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
WTRUs, ARSs, APs, WLG/AAA proxies, networks, and methods thereon are disclosed for fast security setup on a multi-RAT WTRU. Methods of sharing security associations between RATs on a multi-RAT WTRU are disclosed. Methods of caching security associations are disclosed. Methods are disclosed for alerting an ANDSF server of an AP that should be considered for association. Enhancements to advertisements from an AP are disclosed where the advertisements may include SSID with a FQDN, a HESSID type information, or TAI type information. Methods of resolving AP identities to a reachable address are disclosed. An address resolution protocol is disclosed for resolving AP identities. ARSs are disclosed that may resolve a BSSID to a network routable address. Protocols for carrying AP identities and security parameters are disclosed. Methods are disclosed of using ANDSF to provide the WTRU with security information and parameters of an AP. An RSN may indicate security capabilities.
Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
WTRUs, ARSs, APs, WLG/AAA proxies, networks, and methods thereon are disclosed for fast security setup on a multi-RAT WTRU. Methods of sharing security associations between RATs on a multi-RAT WTRU are disclosed. Methods of caching security associations are disclosed. Methods are disclosed for alerting an ANDSF server of an AP that should be considered for association. Enhancements to advertisements from an AP are disclosed where the advertisements may include SSID with a FQDN, a HESSID type information, or TAI type information. Methods of resolving AP identities to a reachable address are disclosed. An address resolution protocol is disclosed for resolving AP identities. ARSs are disclosed that may resolve a BSSID to a network routable address. Protocols for carrying AP identities and security parameters are disclosed. Methods are disclosed of using ANDSF to provide the WTRU with security information and parameters of an AP. An RSN may indicate security capabilities.
Abstract:
A method and apparatus are described that provides flexible spectrum usage by using a paired frequency division duplex (FDD) spectrum to enable dynamic access in television white space (TVWS), sub-leased spectrum or unlicensed spectrum, (e.g., industrial, scientific and medical (ISM) bands), in a femto cell environment or the like. Elastic FDD (E-FDD) enables femto cell operation in TVWS, sub-leased spectrum and/or unlicensed spectrum, either simultaneously with licensed spectrum or as an alternate channel to licensed spectrum. E-FDD enables dynamic asymmetric bandwidth allocation for uplink (UL) and downlink (DL) in FDD, and enables variable duplex spacing, (i.e., using FDD with minimum duplex spacing between DL and UL spectrum, or, using hybrid-FDD, (FDD in a time duplexed fashion), when a spectrum gap between the UL and DL spectrum is below a certain minimum threshold. Additionally, the signaling enhancements to implement E-FDD are also provided.