摘要:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
摘要:
Systems and methods for dynamic white space management are described. First, local handling of channel queries, in which a channel query by a white space device (WSD) is handled by a local dynamic spectrum management (DSM) server, if the DSM server has all the information necessary for providing a response to the channel query. Second, a search extension, in which a WSDB passes part of a search for available channels to a local DSM server. Third, assisting of an available channel calculation, in which a DSM server provides spectrum sensing information to WSDBs to improve the available channel calculation within the WSDBs. And fourth, dynamic bandwidth management to meet the coexistence requirements. In addition, the content of the messages and procedures that enable the above value-adding functions and interactions with the WSDB systems are described.
摘要:
Embodiments contemplate techniques for managing aggregation between using an anchor channel over a first frequency band as the anchor band between an Access Point and a wireless receiver/transmitter unit (WTRU). One or more embodiments may include the WRTU receiving one or more beacons via the anchor channel, where the one or more beacons may provide allocation information for allocating a supplementary channel on a second frequency band as a supplementary band that may be different from the first frequency band. Embodiments also contemplate establishing the supplementary channel over the supplementary band using the allocation information provided in the one or more beacons. Embodiments also contemplate exchanging data over the established supplementary channel on the supplementary band.
摘要:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
摘要:
Methods, apparatus and systems are disclosed. One representative method implemented by a wireless transmit/receive unit includes determining a first beamforming matrix; sending, to a network entity, an indication of the first beamforming matrix; and receiving, from the network entity, an indication of a second beamforming matrix determined by the network entity from at least the first beamforming matrix for beamforming data for transmission.
摘要:
Systems, methods and instrumentalities are disclosed for decoding data. For example, it may be determined, in a current slot, whether data received in a previous slot is decoded successfully. The data received in the previous slot may be included in a Physical Downlink Shared Channel (PDSCH). If the data received in the previous slot is not decoded successfully, preemptive multiplexing information may be detected in a first search space. The data received in the previous slot may be decoded, for example, using detected preemptive multiplexing information. The preemptive multiplexing information may be of a current slot. The preemptive multiplexing information may be comprised in a first DCI. A second search space of the current slot may be searched. For example, the second search space may be searched for a second DCI. The first DCI and the second DCI may be different.
摘要:
Described herein is a silent period method and apparatus for dynamic spectrum management. The methods include configuration and coordination of silent periods across an aggregated channel in a wireless communication system. A silent period management entity (SPME) dynamically determines silent period schedules for channels based on system and device information and assigns a silent period duration and periodicity for each silent period. The SPME may reconfigure the silent period schedule based on system delay, system throughput, channel quality or channel management events. A silent period interpretation entity (SPIE) receives and implements the silent period schedule. The silent periods for the channels may be synchronized, independent, or set-synchronized. Interfaces for communicating between the SPME, SPIE, a channel management function, a medium access control (MAC) quality of service (QoS) entity, a sensing/capabilities database, a MAC layer management entity (MLME) and a wireless receive/transmit unit (WTRU) MLME are described herein.
摘要:
Methods, systems and apparatuses for dynamic spectrum access by both primary users (PUs) and secondary users (SUs) are disclosed. In one embodiment, a method for communicating over a channel may include obtaining, at a secondary transmitter, first and second signals intended for a primary receiver and secondary receivers, respectively; generating, at the secondary transmitter, an assist signal based, at least in part, on the obtained first signal; generating, at the secondary transmitter, a data signal based, at least in part, on the obtained second signal; determining, at the secondary transmitter, a power split ratio between the data signal and the assist signal based, at least in part, on any of a power and a signal-to-noise ratio of the first signal; and generating, at the secondary transmitter, a third signal comprising (i) the data signal and (ii) the assist signal in accordance with power split ratio.
摘要:
Embodiments contemplate devices and techniques for receiving unicast and multicast transmissions over a downlink (DL) shared channel in parallel, for example an LTE DL shared channel (SCH). For example, one or more hybrid automatic repeat request (HARQ) entities may be configured to perform retransmissions of the multicast and/or unicast messages. Common and/or dedicated (e.g., separate) HARQ entities may be utilized for retransmission. The multicast downlink shared channels may be activated and/or deactivated on demand. The activation and/or deactivation may be performed using radio resource control (RRC) signaling and/or Medium Access Control (MAC) signaling. The multicast and/or unicast downlink shared channel data may include scalable video coding (SVC) data of varying priority. Embodiments also contemplate the use of simultaneous (e.g. parallel) multicast/unicast for scalable video coding transmission over WiFi/802.11 protocol signals.
摘要:
Systems and methods are described generally related to the creation of a spectrum allocator (SA) function that can be used to dynamically assign/reassign the frequency of operation of a node operating in a wireless communication network. To permit LTE operation in license exempt (LE) bands, the radio resource management (RRM) system is enhanced to include an interface, which allows it to communicate with modules external to the RRM, such as a coexistence manager, policy engine and sensing toolbox.