Abstract:
Systems, apparatuses and methods for bandwidth management, aggregation and internet protocol (“IP”) flow mobility (“IFOM”) across multiple-access technologies are provided. Included is a method that includes selecting, from a packet data network (“PDN”) connection formed through a plurality of access systems communicatively coupled with a wireless transmit and/or receive unit (“WTRU”), an access system over which to transport a flow of internet protocol (“IP”) traffic to and/or from the WTRU. The method may also include sending, to the WTRU, a request to associate the flow of IP traffic with the selected access system.
Abstract:
A method and apparatus for offloading backhaul traffic are disclosed. A first base station may detect a condition triggering backhaul traffic offloading for a wireless transmit/receive unit (WTRU). The first base station may establish a wireless connection with a second base station, and offload at least one bearer of the WTRU onto the second base station via the wireless connection. The first base station may be a macro-cell base station and the second base station may be a femto-cell base station having a wired connection to Internet and a mobile operator core network. The first or second base station may include a relay functionality and act as a relay between the WTRU and the other base station. The backhaul link may be established using a Uu, Un, X2 interface or any other interface over a licensed or license-exempt frequency, a TV white space frequency, etc.
Abstract:
A method and apparatus are described. A wireless transmit/receive unit (WTRU) generates data bits and piggybacked acknowledgement/non-acknowledgement (PAN) bits and generates a plurality of symbols based on the data bits and the PAN bits. Each symbol of the plurality of symbols represents a plurality of bits and has a least significant bit (LSB) position, and no PAN bits are present in the LSB position of each of the plurality of symbols. The plurality of symbols are transmitted.
Abstract:
A method and apparatus for power control for distributed wireless communication is disclosed including one or more power control loops associated with a wireless transmit/receive unit (WTRU). Each power control loop may include open loop power control or closed loop power control. A multi-phase power control method is also disclosed with each phase representing a different time interval and a WTRU sends transmissions at different power levels to different set of node-Bs or relay stations during different phases to optimize communications.
Abstract:
A device and method for registering devices on advanced networks as well as providing operative communications between a legacy device and a advanced network. The legacy device may contain data, such as sensor data, which is being collected on a network outside the communication range/abilities of the legacy device. An intermediary device may receive the data via a first communication scheme and send the device to a server collecting the data via a second communication scheme.
Abstract:
Systems and methods for providing multiple connections or interfaces at the same time may be disclosed herein. For example, in an embodiment, a first RRC connection may be established between a wireless transmit and receive unit (WTRU) or user equipment (UE) and a network node such as an eNB and a second RRC connection may be established between the WTRU or UE and the network node such as the eNB or another network node such as another eNB. The first RRC connection and the second RRC connections may then be maintained in parallel (e.g. at the same time).
Abstract:
Techniques for supporting utilization of femtocell service capabilities for services are disclosed. A network device may be configured to implement a femto services gateway. The femto services gateway may reside in a femtocell and provide application programming interfaces (APIs) to services to enable applications implementing the services to make use of functionalities of femtocell service capabilities. The APIs may be a subset of or an extended set of Open Service Access Parlay or Parlay-X APIs. The services may be either femtocell-hosted, mobile network operator core network-hosted, or Internet-hosted. The femtocell service capabilities may include a framework service capability feature (SCF), a call control SCF, a user interaction SCF, a mobility SCF, a terminal capability SCF, a data session control SCF, a connectivity manager SCF, an account management SCF, a charging management SCF, a policy management SCF, a presence and availability management SCF, or a multimedia messaging SCF.
Abstract:
Methods, apparatus and systems may support distributed and dynamic mobility management features, including for nodes, functions and interfaces. A distributed gateway (D-GW), which may be a logical entity, may implement functionality of a PDN gateway (PGW) along with additional functionality that may support distributed mobility management (DMM). Additionally, methods, apparatus, and systems may support detecting and discovering capabilities that may be used to support dynamic IP mobility features on mobile node and networks.
Abstract:
A method and apparatus for power control for distributed wireless communication is disclosed including one or more power control loops associated with a wireless transmit/receive unit (WTRU). Each power control loop may include open loop power control or closed loop power control. A multi-phase power control method is also disclosed with each phase representing a different time interval and a WTRU sends transmissions at different power levels to different set of node-Bs or relay stations during different phases to optimize communications.
Abstract:
A method and apparatus for power control for distributed wireless communication is disclosed including one or more power control loops associated with a wireless transmit/receive unit (WTRU). Each power control loop may include open loop power control or closed loop power control. A multi-phase power control method is also disclosed with each phase representing a different time interval and a WTRU sends transmissions at different power levels to different set of node-Bs or relay stations during different phases to optimize communications.