Abstract:
A semiconductor device of an embodiment includes a transistor device in a semiconductor die including a semiconductor body. The transistor device includes transistor cells connected in parallel and covering at least 80% of an overall active area at a first surface of the semiconductor body. The semiconductor device further includes a control terminal contact area at the first surface electrically connected to a control electrode of each of the transistor cells. A first load terminal contact area at the first surface electrically connected to a first load terminal region of each of the transistor cells. The semiconductor device further includes a resistor in the semiconductor die and electrically coupled between the control terminal contact area and the first load terminal contact area, and a pn junction diode electrically connected in series with the resistor. A method of producing the semiconductor device is also described.
Abstract:
A semiconductor component includes a field-effect transistor arrangement having a drift zone and body region between the drift zone and a first surface of a semiconductor body. Trench structures of a first type extend from the first surface into the semiconductor body and have a maximum lateral dimension at the first surface which is less than a depth of first and second ones of the trench structures. A net doping concentration at a reference depth at a first location in the drift zone is at least 10% greater than at a second location in the drift zone at the reference depth, which is located between the body region and a bottom of the first trench structure. The first location is at the same first lateral distance from the first and second trench structures. The second location is at the same second lateral distance from the first and second trench structures.
Abstract:
A semiconductor device of an embodiment includes a transistor device in a semiconductor die including a semiconductor body. The transistor device includes transistor cells connected in parallel and covering at least 80% of an overall active area at a first surface of the semiconductor body. The semiconductor device further includes a control terminal contact area at the first surface electrically connected to a control electrode of each of the transistor cells. A first load terminal contact area at the first surface electrically connected to a first load terminal region of each of the transistor cells. The semiconductor device further includes a resistor in the semiconductor die and electrically coupled between the control terminal contact area and the first load terminal contact area.
Abstract:
A method of manufacturing a semiconductor device includes forming a first semiconductor layer on a semiconductor substrate of a first conductivity type having a continuous first area and a second area, introducing dopants of the first conductivity type in the continuous first area of the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer, and forming trenches in the second semiconductor layer in the continuous first area.
Abstract:
A vertical semiconductor device includes a semiconductor body having a backside and extending, in a peripheral area and in a vertical direction substantially perpendicular to the backside, from the backside to a first surface of the semiconductor body, the body including in an active area spaced apart semiconductor mesas extending, in the vertical direction, from the first surface to a main surface arranged above the first surface, in a vertical cross-section the peripheral area extending between the active area and an edge that extends between the back-side and the first surface, in the vertical cross-section each of the mesas including first and second side walls, a first pn-junction extending between the first and second side walls, and a conductive region in Ohmic contact with the mesa and extending from the main surface into the mesa. Gate electrodes are arranged between adjacent mesas and extend across the first pn-junctions.
Abstract:
A vertical semiconductor device includes a semiconductor body having a backside and extending, in a peripheral area and in a vertical direction substantially perpendicular to the backside, from the backside to a first surface of the semiconductor body, the body including in an active area spaced apart semiconductor mesas extending, in the vertical direction, from the first surface to a main surface arranged above the first surface, in a vertical cross-section the peripheral area extending between the active area and an edge that extends between the back-side and the first surface, in the vertical cross-section each of the mesas including first and second side walls, a first pn-junction extending between the first and second side walls, and a conductive region in Ohmic contact with the mesa and extending from the main surface into the mesa. Gate electrodes are arranged between adjacent mesas and extend across the first pn-junctions.
Abstract:
Producing a vertical semiconductor device includes: providing a semiconductor wafer including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type forming a first pn-junction with the first layer, and a third semiconductor layer of the first conductivity type forming a second pn-junction with the second layer and extending to a main surface of the wafer; forming a hard mask on the main surface that includes hard mask portions spaced apart from each other by first openings; using the hard mask to etch deep trenches from the main surface into the first layer so that mesa regions covered at the main surface by respective hard mask portions are formed between adjacent trenches; filling the trenches and first openings of the hard mask; and etching the hard mask to form second openings in the hard mask at the main surface of the mesas.