Abstract:
Disclosed is a touch display apparatus including a display panel, a substrate and a touch-sensing layer thereon. The substrate is disposed above the display panel and includes a touch-sensing region and a non-touch-sensing region. The touch-sensing layer includes a first trace, and at least a part of the first trace is disposed above the non-touch-sensing region. A mesh pattern is formed on a surface of the first trace.
Abstract:
An organic light emitting diode display and a manufacturing method thereof are provided. The organic light emitting diode display includes a first substrate, a second substrate, a plurality of organic light emitting diodes, and a frit layer. The organic light emitting diodes are disposed on the first substrate, and the frit layer adheres the first substrate and the second substrate to each other. The frit layer includes a first porous region having pores, a second porous region having pores, and a third porous region having pores. The number of the pores of the first porous region with a diameter of larger than or equal to 4 μm and smaller than or equal to 15 μm is greater than the number of the pores of the second porous region with the above-mentioned diameter range.
Abstract:
A substrate structure includes a first substrate, a plurality of first bonding pads, a second substrate and a connecting layer. The first substrate has an element configuration area and a peripheral area. The peripheral area is located around the element configuration area. The first bonding pads are configured spacing at the peripheral area, and a gap is provided between two adjacent first bonding pads. The first bonding pads are located between the first substrate and the second substrate. The connecting layer is located between the first bonding pads and the second substrate. The part of the connecting layer close to the element configuration area is configured with a plurality of first arc edges.
Abstract:
A substrate assembly is provided, including a first substrate and a circuit substrate. The first substrate comprising an edge. An active element layer is disposed on the first substrate. A plurality of first electrodes are disposed on the first substrate and between the edge and an edge of the active element layer, and arranged along a first direction. At least one of the plurality of first electrodes is electrically connected to the active element layer, a first register mark is disposed on the first substrate. The circuit substrate is partially overlapping the first substrate in a vertical projection direction, a plurality of second electrodes is disposed on the circuit substrate.
Abstract:
A touch light emitting diode display device includes: a first substrate having a first surface; a touch signal line projected on the first surface as a touch region; and a first color unit and a second color unit. The first color unit and the second color unit are projected on the first surface as a first region and a second region respectively, wherein the first color unit and the second color unit are of different colors, and a portion of the touch region locates between the first region and the second region.
Abstract:
A touch display panel driven in a display period and a touch period alternately is provided, and includes a plurality of gate lines, each driven by a clock signal to output a scan signal during the display period and stop the scan signal during the touch period; and N dummy gate lines, each driven by a dummy clock signal to output a dummy scan signal before the display period is switched to the touch period, wherein at least one of rising edges of N dummy clock signals is synchronized with at least one of falling edges of the clock signals.
Abstract:
A touch device including a substrate and a sensing electrode thereon is provided. An insulation layer is disposed on the sensing electrode, wherein the insulation layer includes a first contact via exposing a part of a terminal of the sensing electrode. A trace is disposed on the insulation layer and electrically connected to the terminal of the sensing electrode through the first contact via. A corner in the first contact via includes a first edge, a second edge, and a third edge, wherein the second edge is disposed between the first edge and the third edge. The first edge and the second edge include a first angle therebetween of greater than 90 degrees, and the second edge and the third edge include a second angle therebetween of greater than 90 degrees.
Abstract:
An organic light emitting diode display and a manufacturing method thereof are provided. The organic light emitting diode display includes a first substrate, a second substrate, a plurality of organic light emitting diodes, and a frit layer. The organic light emitting diodes are disposed on the first substrate, and the frit layer adheres the first substrate and the second substrate to each other. The frit layer includes a first porous region having pores, a second porous region having pores, and a third porous region having pores. The number of the pores of the first porous region with a diameter of larger than or equal to 4 μm and smaller than or equal to 15 μm is greater than the number of the pores of the second porous region with the above-mentioned diameter range.
Abstract:
An organic light emitting diode display and a manufacturing method thereof are provided. The organic light emitting diode display includes a first substrate, a second substrate, a plurality of organic light emitting diodes, and a frit layer. The organic light emitting diodes are disposed on the first substrate, and the frit layer adheres the first substrate and the second substrate to each other. The frit layer includes a first porous region having pores, a second porous region having pores, and a third porous region having pores. The number of the pores of the first porous region with a diameter of larger than or equal to 4 μm and smaller than or equal to 15 μm is greater than the number of the pores of the second porous region with the above-mentioned diameter range.
Abstract:
A touch device is provided, including a first substrate and a circuit substrate. The first substrate includes a touch sensing structure and a plurality of first electrodes. The touch sensing structure is disposed on the first substrate. The first electrodes are arranged along a first direction. The first electrodes are disposed on the first substrate and electrically connected to the touch sensing structure, a first gap is formed between two adjacent first electrodes, and a minimum distance between the two adjacent first electrodes is a gap distance. The circuit substrate is partially overlapping the substrate in a vertical projection direction, the circuit substrate including a plurality of second electrodes corresponding to the first electrodes. One of the two adjacent first electrodes has a first electrode side edge facing the first gap. One of the second electrodes has a second electrode side edge located in the first gap.