Abstract:
Material powders made of a R—Fe—N compound that contains a light rare earth element as R or material powders made of a Fe—N compound are formed into a compact having a predetermined shape through compression forming. Then, the compact formed of the material powders is heated in an oxidative atmosphere to bond the material powders to each other by oxide films formed on the material powders.
Abstract:
A web coating apparatus applies a coating material to surfaces of a web being transferred. The web coating apparatus includes: a cutting apparatus that makes cuts in the web being transferred so that the cuts extend through the web; an extending apparatus that extends the web in the lateral direction of the web and widens the cuts in the lateral direction of the web; and coating material discharging apparatuses that apply the coating material to the surfaces of the web extended in the lateral direction of the web.
Abstract:
In a method for manufacturing a rotor, each magnetic steel sheet has protrusions on its one surface and has recesses on the other surface at positions corresponding to the protrusions. The plurality of magnetic steel sheets are joined together as the protrusions of each magnetic steel sheet are fitted in the recesses of its adjoining magnetic steel sheet. A shaft member is inserted into a rotor core in the same direction as that in which the protrusions protrude.
Abstract:
A degree-of-dispersion inspecting apparatus accurately quantifies the degree of dispersion of particles of an electricity storage material based on in-plane uniformityand void size uniformity, which are obtained from an image of a coating film of the electricity storage material. The in-plane uniformity is a macroscopic value based on the ratio of voids between the particles in the electricity storage material, and the void size uniformity is a microscopic value based on values equivalent to the sizes of the voids between the particles in the electricity storage material. This allows the degree of dispersion of the particles of the electricity storage material to be accurately quantified even if the particles of the electricity storage material are in contact with each other or vary in size.
Abstract:
There is provided a magnet manufacturing method with which a high residual magnetic flux density is obtained without using dysprosium (Dy) and without using a bonding agent. Magnetic powders made of a hard magnetic material formed of a R—Fe—N compound containing a rare earth element as R or formed of a Fe—N compound are used. In a pressurizing step, the magnetic powders are pressurized by molds multiple times to form a primary compact. In a baking step, a secondary compact is formed by heating the primary compact in an oxidizing atmosphere at a temperature lower than a decomposition temperature of the magnetic powders to bond together the outer surfaces of the adjacent magnetic powders with oxide films formed on the outer surfaces of the magnetic powders.
Abstract:
A power supply device includes a combination of one power supply module of a plurality of power supply modules having different power supply performances and one controller of a plurality of controllers having different functions, which are selectively combined. Each of the plurality of power supply modules includes a power supply module side connection portion common to the plurality of power supply modules, and each of the plurality of controllers includes a controller side connection portion common to the plurality of controllers and connectable to the power supply module side connection portion, to allow the one power supply module and the one controller are selectively combined.
Abstract:
A production apparatus for producing an electricity storage material is provided. The electricity storage material includes at least a thickener and an active material. The production apparatus includes a solution production device and a mixture-kneading device. The solution production device produces a surfactant-containing solution of the thickener. The mixture-kneading device kneads the solution together with a powder of the active material.
Abstract:
An alkali metal ion capacitor that is capable of operating in a high-temperature environment at 85° C. The alkali metal ion capacitor is provided with: a positive electrode active material capable of adsorbing and desorbing alkali metal ions; a positive electrode binder for binding the positive electrode active material; a negative electrode active material capable of storing and releasing alkali metal ions; a negative electrode binder for binding the negative electrode active material; and an electrolytic solution that contains an organic solvent and an imide-based alkali metal salt. The negative electrode active material is predoped with alkali metal ions. The positive electrode binder has a Hansen solubility parameter-based RED value of more than 1 with respect to the electrolytic solution.
Abstract:
An auxiliary power supply device includes an auxiliary power supply; and an auxiliary power supply control unit configured to switch a mode of the auxiliary power supply to an output mode or a non-output mode when electric power is output from a main power supply to a drive motor. The auxiliary power supply control unit is configured to switch the mode to the non-output mode when a required power value required by the drive motor is equal to or smaller than a predetermined power value and to switch the mode to the output mode when the required power value is larger than the predetermined power value, the predetermined power value being set to a value smaller than outputtable electric power that is electric power outputtable from the main power supply.
Abstract:
A manufacturing method for a magnet includes: a step of obtaining mixed powder of magnetic powder and a lubricant; a step of mixing the mixed powder with an uncured binder that is a silicone composition to attach the binder to a surface of the mixed powder; a step of molding the mixed powder under pressure to obtain a molding, and a step of curing the silicone composition to bind particles of the magnetic powder together,