Abstract:
A method for providing a cruise control warning system including monitoring a cruise control system to determine if the cruise control system is activated or deactivated for a vehicle. The method also includes receiving vehicle operation data for the vehicle. A likelihood that a slippery road condition exists for the vehicle is determined based on the vehicle operation data. A warning message is indicated to a driver of the vehicle when it has been determined that the likelihood that a slippery road condition exists is over a first pre-selected value and the cruise control system is activated.
Abstract:
A restraint system for restraining a recumbent occupant of a vehicle seat surface includes a member being selectively movable between a stowed position and a deployed position. The member, when in the deployed position, extends higher than the seat surface and is configured to exert a reaction force on the recumbent occupant to retain the occupant above the seat surface in the event of a vehicle impact.
Abstract:
A telescoping column includes a first tube and a second tube arranged in telescoping fashion. A locking structure is disposed between a surface formed on the first tube and a ramp disposed on the second tube. The locking structure contacts the ramp at a first elongated area of contact, and the locking structure contacts the surface at a second elongated area of contact. Relative movement of the first and second tubes in response to an impact force applied to one of the first and second tubes causes the locking structure to become wedged between the ramp and the surface, and at least a portion of the impact force between the first and second tubes is transmitted through the first and second elongated areas of contact.
Abstract:
The present invention is directed to a filtering technique for improving the capability of crash sensing systems in distinguishing between severe and minor crash events. The onset of a crash event is detected when a sensed vehicle deceleration exceeds a deceleration threshold value. Following the onset of the crash event, a crash severity parameter is calculated at predetermined intervals as a function of vehicle deceleration. At the conclusion of a predetermined time period, a value of the crash severity parameter less than or equal to a parameter threshold value corresponds to a minor crash incident. A value greater than the parameter threshold value corresponds to a potential severe crash event requiring airbag deployment, thereby necessitating further crash severity discrimination. Before continuing, crash severity parameters having specific signal trace characteristics discard deceleration data generated during the initial stages of the crash event, preventing potentially misleading deceleration data from influencing airbag deployment. A severe crash event is characterized by the values of multiple crash severity parameters simultaneously exceeding their respective deployment threshold levels. A value of at least one of the crash severity parameters less than a predetermined reset threshold value corresponds to a minor crash incident.
Abstract:
A system and method for detecting the position of the head and/or eye of a driver of an automobile and automatically adjusting the position of the steering wheel based on the head and/or eye position in order to provide the driver with an optimized view of the instrumentation panel and road. The system and method utilizes the vehicle parameters, driver parameters, and various settings to determine the proper position of the steering wheel including the height, proximity to driver, and tilt angle of the steering wheel. The system may also adjust the height and/or length of the steering column in order to adjust and provide the proper position of the steering wheel.
Abstract:
An airbag assembly includes an housing, an inflator mounted in the housing, and an airbag. A vent opening is provided in the wall of the housing for venting inflation gas from the housing. A vent cover closes the vent opening so that inflation gas does not reach the vent opening. A valve member also closes the vent cover and is selectively moveable by an electric actuator to adapt the valve member to a selected degree of closure in response to sensed conditions of the occupant and the vehicle. A tether is connected to the airbag and to the vent cover to suddenly open the vent cover as the airbag reaches a certain stage in its deployment, so that the rate at which inflation gas is vented from the housing through the vent opening will be determined by the previously established selected degree of closure of the vent opening.
Abstract:
A method for predicting potential injury assessment for at least one occupant of a vehicle involved in a crash event and for broadcasting assessment of the occupant to a medical response unit. An occupant seated in each seat of a vehicle is detected. Occupant data is obtained relating to physical characteristics of each occupant seated in the vehicle. A crash event involving the vehicle is detected. Vehicle dynamic data and safety restraint data during the crash event is recorded. The potential injury assessment of each occupant is predicted by an injury assessment processing module based on the vehicle dynamic data and safety restraint data obtained during the crash event and the occupant data of each occupant in the vehicle. The corresponding injury assessment of each occupant of the vehicle is broadcast to a medical response unit.
Abstract:
An adjustable head tool (AHT) is configured for positioning a free motion headform (FMH) having a regulated FMH backoff requirement prior to an impact between the FMH and a target surface having a target point. The AHT has a built-in or a variable backoff angle relative to the position of the target point, and includes a cranial portion and an adjustable facial template. The cranial portion encloses a linkage assembly, and the facial template has one or more facial features. A rotary dial translates the facial template with respect to the cranial portion to maintain the regulated FMH backoff requirement. The cranial portion includes a forehead impact zone having a first set of demarcations, and the rotary dial has a second set of demarcations corresponding to the first set of demarcations. The dial is set so the second set of demarcations matches the first set during positioning of the AHT.
Abstract:
A system and method for providing mechanical time dilation by pre-braking a vehicle in the event there is a collision threat so as to reduce or eliminate the need for full automatic braking if the collision becomes imminent. The system calculates a time dilation deceleration to either maintain a time to collision at a previous value before the calculation or at a predetermined value. The system also estimates a projected closing speed of the vehicle to the object at a distance that would require full automatic braking to prevent a collision. The system then determines whether the time dilation deceleration is greater than a decelerating threshold and, if so, provides automatic vehicle braking at the threshold until the vehicle comes to a full stop. If the time dilation deceleration is not greater than the threshold, then the system provides automatic braking to decelerate the vehicle at the time dilation deceleration.
Abstract:
A hood elevation system for a vehicle includes an actuator configured to selectively move at least a portion of a vehicle hood between an elevated and a retracted position. The hood elevation system also includes a self-locking mechanism configured to allow movement of the hood between the elevated and retracted positions initiated by the actuator, but to resist retraction of the hood as a result of certain loads applied to the hood. The self-locking mechanism thus enables repeated elevation and retraction of the hood. In a preferred embodiment, the self-locking mechanism is configured to deform, thereby absorbing energy from an impact to the hood.