Abstract:
Provided is a tunable laser module emitting an optical signal having high speed, high power and wideband wavelength tuning. The tunable laser module includes a laser array configured to emit an optical signal having a plurality of different lasing wavelengths, a temperature controller configured to change a temperature of the laser array, and an optical integration device configured to modulate or amplify the optical signal at a side of the laser array opposing the temperature controller.
Abstract:
Provided is a vertical cavity surface emitting device. The surface emitting device includes a lower mirror layer emitting light having a long wavelength, an active layer providing an optical gain, a tunnel junction layer for confining a current, and an upper mirror layer, which are sequentially stacked on a compound semiconductor substrate, wherein a heat release layer is formed on side surfaces of at least one of the active layer, the tunnel junction layer and the upper mirror layer by using etching process, and the heat release layer has greater thermal conductivity than at least one of the active layer, the tunnel junction layer and the upper mirror layer.
Abstract:
Provided is a vertical cavity surface emitting device. The surface emitting device includes a lower mirror layer emitting light having a long wavelength, an active layer providing an optical gain, a tunnel junction layer for confining a current, and an upper mirror layer, which are sequentially stacked on a compound semiconductor substrate, wherein a heat release layer is formed on side surfaces of at least one of the active layer, the tunnel junction layer and the upper mirror layer by using etching process, and the heat release layer has greater thermal conductivity than at least one of the active layer, the tunnel junction layer and the upper mirror layer.
Abstract:
Provided are an avalanche photodiode and a method of fabricating the same. The method of fabricating the avalanche photodiode includes sequentially forming a compound semiconductor absorption layer, a compound semiconductor grading layer, a charge sheet layer, a compound semiconductor amplification layer, a selective wet etch layer, and a p-type conductive layer on an n-type substrate through a metal organic chemical vapor deposition process.
Abstract:
Provided are a use of chemically-crosslinkable, poly(organophosphazene)s for biomaterials, chemically-crosslinkable poly(organophosphazene)s with a physiologically active substance covalently-bonded thereto, a use thereof for biomaterials, and a process for preparing the same. The chemical crosslinkings can be made by UV irradiation, and/or a crosslinker, and/or an additive, and/or an enzyme, and/or a mixing of at least one polymer.