Abstract:
A selective crystallization method includes placing a first substrate including first crystallization regions on a second substrate including second crystallization regions such that the first crystallization regions and the second crystallization regions are arranged alternately, and crystallizing the alternately-arranged first crystallization regions and the second crystallization regions with a laser beam. A laser crystallization apparatus can be used in the selective crystallization method.
Abstract:
A method of manufacturing an organic light-emitting display device is disclosed. The method includes: uniformly forming an active layer on an entire surface of a substrate on which an organic light-emitting diode, a thin film transistor (TFT), and a capacitor are to be formed; performing a first mask process on the active layer to form a pixel electrode of the organic light-emitting diode, a gate electrode of the TFT, and an upper electrode of the capacitor; performing a second mask process to form an insulating layer having openings that expose the pixel electrode, the upper electrode, and the active layer in a region of the TFT; performing a third mask process to form a source-drain electrode that contacts an exposed portion of the active layer; and performing a fourth mask process to form a pixel-defining layer (PDL) that exposes the pixel electrode and covers the TFT and the capacitor.
Abstract:
An OLED device includes: a TFT including an active layer, gate, source and drain electrodes, a first insulating layer between the active layer and the gate electrode, and a second insulating layer between the source and drain electrodes, a pixel electrode on the first and second insulating layers, connected to one of the source and drain electrodes, a capacitor including a first electrode on the same layer as the active layer, a second electrode on the same layer as the gate electrode, and a third electrode formed of the same material as the pixel electrode, a third insulating layer between the second insulating layer and the pixel electrode and between the second and third electrodes, a fourth insulating layer covering the source, drain and third electrodes, exposing a portion of the pixel electrode, an organic light-emitting layer on the pixel electrode, and a counter electrode on the organic light-emitting layer.
Abstract:
Disclosed is an organic light-emitting display device including a transparent substrate which includes a display portion and a pad portion formed in a region around the display portion, a first semiconductor layer formed on the display portion, a second semiconductor layer formed on the pad portion, and a transparent electrode formed on each of the first the second semiconductor layers, where the first and second semiconductor layers include the same material.
Abstract:
A gate driving apparatus includes a first stage which outputs a first gate output signal, and a second stage which outputs a second gate output signal. The first stage includes: a transistor which includes a gate electrode, a source electrode and a drain electrode; and a dummy transistor which includes a dummy gate electrode, a dummy source electrode and a dummy drain electrode. The gate electrode receives the second gate output signal, and the dummy source electrode is connected to the source electrode or the drain electrode of the transistor and prevents static electricity from flowing to the first stage.
Abstract:
A scan driving circuit includes a shift register configured to sequentially output a first scan signal to scan lines through respective first output lines during a first section of a frame period, a simultaneous switching block configured to simultaneously output a second scan signal to the scan lines through respective second output lines during a second section of the frame period, the first and second periods of the frame period being different from each other, a switching device electrically connected to the second output line, and a repair line across the first output line and the second output line.
Abstract:
An OLED display including a substrate main body; a first gate electrode and a second semiconductor layer; a gate insulating layer on the first gate electrode and the second semiconductor layer; a first semiconductor layer and a second gate electrode overlying the first gate electrode and the second semiconductor layer, respectively; etching stopper layers contacting portions of the first semiconductor layer; an interlayer insulating layer on the first semiconductor layer and the second gate electrode and including contact holes exposing the plurality of etching stopper layers, respectively; a first source electrode and a first drain electrode on the interlayer insulating layer and the contact holes being indirectly connected to the first semiconductor layer via the etching stopper layers or directly connected to the first semiconductor layer; and a second source electrode and a second drain electrode on the interlayer insulating layer being connected to the second semiconductor layer.
Abstract:
An organic light-emitting display apparatus includes a first insulating layer, a second insulating layer on the first insulating layer and including an unevenness portion, a third insulating layer on the second insulating layer, a pixel electrode on the third insulating layer, an opposite electrode facing the pixel electrode, and an organic emission layer between the pixel electrode and the opposite electrode; a thin film transistor including an active layer, a gate electrode, and source/drain electrodes connected to the active layer, the first insulating layer being between the active layer and the gate electrode and the second insulating layer being between the gate electrode, and the source/drain electrodes; and a capacitor including a lower electrode on a same layer as the gate electrode, a dielectric layer of a same material as the third insulating layer, and an upper electrode on a same layer as the pixel electrode.
Abstract:
An organic light-emitting display device includes a gate electrode, a source electrode, and a drain electrode on a substrate, a gate interconnection line connected to the gate electrode, a source and drain interconnection line connected to the source and drain electrodes, a first test pad electrically connected to the source and drain interconnection line, and a second test pad electrically connected to the gate interconnection line. The second test pad is at a same level as the first test pad, and the gate electrode is on a different layer than the source and drain electrodes.
Abstract:
A thin film transistor (TFT) array substrate includes a TFT on a substrate, the TFT including an active layer, gate electrode, source electrode, drain electrode, first insulating layer between the active layer and the gate electrode, and second insulating layer between the gate electrode and the source and drain electrodes; a pixel electrode on the first insulating layer and the second insulating layer, the pixel electrode being connected to one of the source electrode and drain electrode; a capacitor including a lower electrode on a same layer as the gate electrode and an upper electrode including the same material as the pixel electrode; a third insulating layer directly between the second insulating layer and the pixel electrode and between the lower electrode and the upper electrode; and a fourth insulating layer covering the source electrode, the drain electrode, and the upper electrode, and exposing the pixel electrode.