Abstract:
A motor controller includes: a velocity calculation unit for obtaining an angle θ(n), which shows a rotation position, and an angular velocity ω(n) of a rotor at a time point n; a compensation amount calculation unit for calculating a compensation angle Δθ by which the rotor advances from the time point n to a (n+1)th control cycle (a control cycle starting from a time point n+1), based on an angular acceleration a(n) of the rotor, an angular velocity ω(n) of the rotor at the time point n and a time length T of the control cycle; and a PWM inverter for controlling a voltage to be applied to a coil such that a rotating magnetic field based on a rotation position of the rotor advanced by the compensation angle Δθ from the rotation position of the rotor at the time point n is formed in the (n+1)th control cycle.
Abstract:
In a device for controlling a motor mounted on a system with different operation modes, a controller unit calculates an input value for the motor based on an output value of the motor and a target value depending on operation modes of the system, and instructs a driver circuit of the motor to apply the input value to the motor. An estimation unit estimates an amount of rise in temperature of the motor by applying the input value for the motor to a thermal model of the motor. A notification unit compares a value estimated by the estimation unit with a threshold value. When the estimated value exceeds the threshold value, the notification unit sends a request for change of operation mode to the system.
Abstract:
An image forming apparatus includes: a conveyance roller configured to convey recording sheets; a brush motor configured to drive the conveyance roller to rotate; and a control unit configured to control a rotational speed of the brush motor, wherein while the conveyance roller conveys a recording sheet, (i) the control unit applies voltage to an outer circumferential surface of a commutator of the brush motor to drive the brush motor to rotate by a predetermined rotation amount, so as to perform a cleaning operation to remove a film deposited on the outer circumferential surface, and (ii) the control unit reduces the rotational speed of the brush motor while not performing the cleaning operation, so as to correct a conveyance distance of the recording sheet.
Abstract:
An image forming apparatus includes: a conveyance roller configured to convey recording sheets; a brush motor configured to drive the conveyance roller to rotate; and a control unit configured to control a rotational speed of the brush motor, wherein while the conveyance roller conveys a recording sheet, (i) the control unit applies voltage to an outer circumferential surface of a commutator of the brush motor to drive the brush motor to rotate by a predetermined rotation amount, so as to perform a cleaning operation to remove a film deposited on the outer circumferential surface, and (ii) the control unit reduces the rotational speed of the brush motor while not performing the cleaning operation, so as to correct a conveyance distance of the recording sheet.
Abstract:
A motor controller estimates an initial position of a magnetic pole of a rotor of a brushless DC motor in an inductive sensing scheme. The motor controller controls a drive circuit to apply an AC voltage to a stator winding at a first energization angle, and subsequently to apply an AC voltage to the stator winding at a second energization angle before a residual current flowing through the stator winding returns to zero. At each energization angle, the motor controller corrects a peak value of a current in the stator winding based on the residual current detected immediately before a voltage is applied to the stator winding or at a time when voltage application to the stator winding is started. Based on the corrected peak value, the control circuit estimates the initial position of the magnetic pole of the rotor.
Abstract:
In a motor control device in one embodiment, an initial position estimation unit estimates an initial position of a magnetic pole of a rotor of a motor in an inductive sensing scheme. At each of energization angles, the initial position estimation unit multiplies a γ-axis current component Iγ corresponding to a peak value of a current flowing through a stator winding by each of a cosine value and a sine value of a correction angle obtained by correcting each of the energization angles. The initial position estimation unit estimates the initial position of the magnetic pole of the rotor based on a ratio between an integrated value of a multiplication result about the cosine value and an integrated value of a multiplication result about the sine value.
Abstract:
A control device of a permanent magnet synchronous motor that is a control device of a sensorless-type permanent magnet synchronous motor in which a rotor using a permanent magnet rotates by a rotating magnetic field caused by a current flowing in an armature includes: a driver that applies a voltage to the armature and drives the rotor; an initial position estimator that estimates an initial position which is a magnetic pole position of the rotor that is stopped; and a controller that controls the driver so as to apply a pulse train including a voltage pulse for searching the initial position for each of n angle positions dividing a search range of an electrical angle of 360 degrees to the armature, wherein the pulse train includes a first pulse and a second pulse.
Abstract:
A controller for a sensorless permanent magnet synchronous motor having a rotor using a permanent magnet, the rotor rotating by a rotating magnetic field caused by a current flowing through an armature is provided. The controller is configured to apply a pulse voltage for generating a magnetic field vector for searching for the initial position to each of search sections obtained by dividing a target range, narrow down a target range in such a manner that a search section in which a largest amount of current flows through the armature by application of the pulse voltage is selected as a subsequent target range, and repeat the application processing and the narrow-down processing to estimate the initial position.
Abstract:
A control method for a three-phase DC brushless motor including a rotor that includes a plurality of magnetic poles and that is rotatable, a stator that includes a plurality of magnetic field generation parts to generate a magnetic field to be a driving source of the rotor, and a sensor to detect a magnetic pole of the rotor which pole passes through a first position in the stator is provided, the method including: detecting in which the sensor detects a first magnetic pole of the rotor which pole passes through the first position; estimating, based on a result of the detection of the first magnetic pole, time until the first magnetic pole reaches a second position in the stator; and controlling the plurality of magnetic field generation parts in such a manner that a suitable magnetic field is generated when the first magnetic pole passes through the second position.
Abstract:
A controller for a permanent magnet synchronous motor includes an estimating portion configured to determine an estimated value of a rotational speed of the rotor and an estimated value of a position of magnetic poles of the rotor based on a value of the current detected by the current detector and a parameter value indicating an interlinkage magnetic flux caused by the permanent magnet across the winding; a control unit configured to control the drive portion to cause the rotating magnetic field based on the estimated value of the rotational speed and the estimated value of the position of the magnetic poles; and a correction portion configured to correct the parameter value indicating the interlinkage magnetic flux based on correction information, the correction information being determined based on a temperature of the winding and a relationship between the temperature of the winding and a temperature of the permanent magnet.