摘要:
A method of adjusting the cathode DC bias in a plasma chamber for fabricating semiconductor devices. A dielectric shield is positioned between the plasma and a selected portion of the electrically grounded components of the chamber, such as the electrically grounded chamber wall. The cathode DC bias is adjusted by controlling one or more of the following parameters: (1) the surface area of the chamber wall or other grounded components which is blocked by the dielectric shield; (2) the thickness of the dielectric; (3) the gap between the shield and the chamber wall; and (4) the dielectric constant of the dielectric material. In an apparatus aspect, the invention is a plasma chamber for fabricating semiconductor devices having an exhaust baffle with a number of sinuous passages. Each passage is sufficiently long and sinuous that no portion of the plasma within the chamber can extend beyond the outlet of the passage. By blocking the plasma from reaching the exhaust pump, the exhaust baffle reduces the deposition of unwanted particles on exhaust pump components. The exhaust baffle also reduces the cathode DC bias by reducing the effective surface area of the electrically grounded chamber wall which couples RF power to the plasma.
摘要:
The invention contours the chamber surface overlying semiconductor wafer being processed (i.e., the chamber ceiling) in such a way as to promote or optimize the diffusion of plasma ions from their regions of origin to other regions which would otherwise have a relative paucity of plasma ions. This is accomplished by providing a greater chamber volume over those areas of the wafer otherwise experiencing a shortage of plasma ions and a smaller chamber volume over those areas of the wafer experiencing a plentitude of plasma ions (e.g, due to localized plasma generation occurring over the latter areas). Thus, the ceiling is contoured to promote a plasma ion diffusion which best compensates for localized or non-uniform patterns in plasma ion generation typical of an inductively coupled source (e.g., an overhead inductive antenna). Specifically, the invention provides a lesser ceiling height (relative to the wafer surface) over regions in which plasma ions are generated or tend to congregate and a greater ceiling height in other regions. More specifically, in the case of an overlying inductive antenna where plasma ion density tends to fall off toward the wafer periphery, the ceiling contour is such that the ceiling height increases radially, i.e., toward the wafer periphery. This promotes or increases plasma ion diffusion toward the wafer periphery as a function of the rate at which the ceiling height increases radially.
摘要:
This invention relates to coating of substrates in a vacuum system. A beam of molecules incident upon a molecular beam converter is transformed into a molecular beam flowing from the converter toward a substrate to be coated, or on which a layer is to be grown epitaxially. The incident beam is directed onto a heated impingement surface. In most embodiments the impingement surface generally faces the substrate to be coated, and the incident beam strikes the surface from the substrate side. A heating means maintains the impingement surface at a designated temperature. The heating means is separated and shielded from the impingement surface to avoid introducing contaminants from the heating means into the converted molecular beam, and also to avoid adverse physical and chemical effects on the heating means caused by the incident beam and its dissociation products. The incident beam may consist of gaseous compounds of normally solid materials which are at least partially dissociated at the heated impingement surface; the converted beam will then differ from the incident beam in direction, angular distribution, and molecular species. Alternatively, the incident beam may consist of atoms or molecules of elemental solids, in which case reflection and angular redistribution, with or without further dissociation, may occur at the heated impingement surface. Coating uniformity and step coverage can be improved by controlling the size and shape of the incident beam.
摘要:
The present invention provides a temperature controlled energy transparent window or electrode used to advantage in a substrate processing system. The invention also provides methods associated with controlling lid temperature during processing and for controlling etching processes. In a preferred embodiment the invention provides a fluid supply system for the lid which allows the fluid to flow through a feedthrough and into and out of a channel formed in the window or electrode. The fluid supply system may also mount the window or electrode to a retaining ring which secures the window or electrode to the chamber. In another aspect the invention provides a bonded window or electrode having a first and second plate having a channel formed in the plates so that when the plates are bonded together they form a channel therein through which a temperature controlling fluid can be flowed. An external control system preferably regulates the temperature of the fluid.
摘要:
The present invention provides a method and an apparatus for cleaning substrates. The cleaning chamber defines a processing cavity adapted to accommodate a substrate therein. In one embodiment, the cleaning chamber includes a chamber body having a processing cavity defined therein. A substrate is disposed in the processing cavity without contacting other chamber components by a Bernoulli effect and/or by a fluid cushion above and/or below the substrate. Fluid is flowed into the processing cavity at an angle relative to a radial line of the substrate to induce and/or control rotation of the substrate during a cleaning and drying process.
摘要:
A substrate processing system having a bi-directional interface and concomitant communication protocol to allow a controller to communicate with an external endpoint system is disclosed. More specifically, the substrate processing system comprises a controller and an endpoint detection system that are coupled together via a RS-232 interface. A SECS compliant communication protocol is employed to effect communication between the controller and endpoint detection system to increase wafer processing information exchange and data exchange.
摘要:
A method of adjusting the cathode DC bias in a plasma chamber for fabricating semiconductor devices. A dielectric shield is positioned between the plasma and a selected portion of the electrically grounded components of the chamber, such as the electrically grounded chamber wall. The cathode DC bias is adjusted by controlling one or more of the following parameters: (1) the surface area of the chamber wall or other grounded components which is blocked by the dielectric shield; (2) the thickness of the dielectric; (3) the gap between the shield and the chamber wall; and (4) the dielectric constant of the dielectric material. In an apparatus aspect, the invention is a plasma chamber for fabricating semiconductor devices having an exhaust baffle with a number of sinuous passages. Each passage is sufficiently long and sinuous that no portion of the plasma within the chamber can extend beyond the outlet of the passage. By blocking the plasma from reaching the exhaust pump, the exhaust baffle reduces the deposition of unwanted particles on exhaust pump components. The exhaust baffle also reduces the cathode DC bias by reducing the effective surface area of the electrically grounded chamber wall which couples RF power to the plasma.
摘要:
The temperature of a substrate being coated by molecular beam epitaxial techniques is monitored during the deposition process. The substrate is mounted on a holder that is brought by a carriage to a treating station where the deposition occurs. At the station, a pair of metal contact pins selectively contact a surface of the holder. One of the contact pins and the surface, when contacting, form a first thermocouple junction; a second thermocouple junction is formed by the second contact pin and surface. The thermocouple junctions have dissimilar properties so that a voltage indicative of the temperature of the object is derived between them while the pins and surface contact each other. The holder is transferred between the treating station and carriage by translational and rotational motion of the holder and the carriage. While the translational and rotational motions occur, contact between the surface of the holder and the pins is prevented.