Abstract:
A micro electromechanical system switch having an electrical pathway is presented. The switch includes a first portion and a second portion. The second portion is offset to a zero overlap position with respect to the first portion when the switch is in open position (or in the closed position depending on the switch architecture). The switch further includes an actuator for moving the first portion and the second portion into contact.
Abstract:
A motor starter is provided. The motor starter includes micro-electromechanical system switching circuitry. The system may further include solid state switching circuitry coupled in a parallel circuit with the electromechanical switching circuitry, and a controller coupled to the electromechanical switching circuitry and the solid state switching circuitry. The controller may be configured to perform selective switching of a load current from a motor connected to the motor starter. The switching may be performed between the electromechanical switching circuitry and the solid state switching circuitry in response to a load current condition appropriate to an operational capability of a respective one of the switching circuitries.
Abstract:
The present invention comprises MEMS enabled apparatus for the detection of arc-faults and the elimination of arc-flash conditions. The apparatus comprises an arc-flash detection component and a current limiting component. The current limiting component comprises a logic circuit in communication with the user interface, an MEMS protection circuit in communication with the logic circuit, and a switching circuit in communication with the MEMS protection circuit. The switching circuit comprises a plurality of micro-electromechanical system switching devices and a voltage limiting device, wherein the voltage limiting device is configured to prevent an over voltage event during a current limiting operation.
Abstract:
A circuit for controlling operation of a load. In one example, a MEMS switch is positioned in the circuit to place the load in one of a conducting state or a nonconducting state. A piezoelectric transformer provides a relatively high voltage output signal or a relatively low voltage output signal to control movement of the switch between a closed position, placing the load in the conducting state, and an open position. The high voltage output signal includes a frequency component in the resonant frequency range of the transformer. Control circuitry provides an input voltage signal to the piezoelectric transformer to provide the high voltage output signal or the low voltage output signal at the output terminals of the piezoelectric transformer.
Abstract:
A method for forming smooth walled, prismatically-profiled through-wafer vias and articles formed through the method. An etch stop material is provided on a wafer, which may be a silicon wafer. A mask material is provided on the etch stop material and patterned in such a way as to lead to the formation of vias that have at least one pair of opposing side walls that run parallel to a plane in the wafer. A wet etchant, such as potassium hydroxide, is used to etch vias in the wafer. The use of a wet etchant leads to the formation of smooth side walls. This method allows an aspect ratio of height versus width of the vias of greater than 75 to 1.
Abstract:
A system is presented. The system includes detection circuitry configured to detect occurrence of a zero crossing of an alternating source voltage or an alternating load current. The system also includes switching circuitry coupled to the detection circuitry and comprising a micro-electromechanical system switch. Additionally, the system includes control circuitry coupled to the detection circuitry and the switching circuitry and configured to perform arc-less switching of the micro-electromechanical system switch responsive to a detected zero crossing of an alternating source voltage or alternating load current.
Abstract:
A pressure sensor is provided. The pressure sensor includes a multi-layer laminate comprising a substrate and a semiconductor layer, wherein the substrate comprises single crystal or quasi-single crystal aluminum oxide, and a portion of the substrate that is spaced from a peripheral edge is wet etched to form an inwardly facing sidewall that defines a volume; and a substrate to which the multi-layer laminate is secured. The volume is an enclosed volume further defined by a substrate surface.
Abstract:
A method for forming smooth walled, prismatically-profiled through-wafer vias and articles formed through the method. An etch stop material is provided on a wafer, which may be a silicon wafer. A mask material is provided on the etch stop material and patterned in such a way as to lead to the formation of vias that have at least one pair of opposing side walls that run parallel to a plane in the wafer. A wet etchant, such as potassium hydroxide, is used to etch vias in the wafer. The use of a wet etchant leads to the formation of smooth side walls. This method allows an aspect ratio of height versus width of the vias of greater than 75 to 1.
Abstract:
According to some embodiments, an apparatus includes a substrate that defines a plane. The apparatus also includes a first conducting plate that is substantially normal to the substrate and a second conducting plate that is (i) substantially normal to the substrate and (ii) deformable in response to a pressure.
Abstract:
A system that includes micro-electromechanical system switching circuitry is provided. The system may include a first over-current protection circuitry connected in a parallel circuit with the micro-electromechanical system switching circuitry for suppressing a voltage level across contacts of the micro-electromechanical system switching circuitry during a first switching event, such as a turn-on event. The system may further include a second over-current protection circuitry connected in a parallel circuit with the micro-electromechanical system switching circuitry for suppressing a current flow through the contacts of the micro-electromechanical system switching circuitry during a second switching event, such as a turn-off event.