摘要:
A structure has at least one field effect transistor having a gate stack disposed between raised source drain structures that are adjacent to the gate stack. The gate stack and raised source drain structures are disposed on a surface of a semiconductor material. The structure further includes a layer of field dielectric overlying the gate stack and raised source drain structures and first contact metal and second contact metal extending through the layer of field dielectric. The first contact metal terminates in a first trench formed through a top surface of a first raised source drain structure, and the second contact metal terminates in a second trench formed through a top surface of a second raised source drain structure. Each trench has silicide formed on sidewalls and a bottom surface of at least a portion of the trench. Methods to fabricate the structure are also disclosed.
摘要:
Transistor devices including stressors are disclosed. One such transistor device includes a channel region, a dielectric layer and a semiconductor substrate. The channel region is configured to provide a conductive channel between a source region and a drain region. In addition, the dielectric layer is below the channel region and is configured to electrically insulate the channel region. Further, the semiconductor substrate, which is below the channel region and below the dielectric layer, includes dislocation defects at a top surface of the semiconductor substrate, where the dislocation defects are collectively oriented to impose a compressive strain on the channel region such that charge carrier mobility is enhanced in the channel region.
摘要:
A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
摘要:
In one exemplary embodiment, a semiconductor structure including: a SOI substrate having of a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, where the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion of the top silicon layer, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.
摘要:
A method includes forming isolation regions in a semiconductor substrate to define a first field effect transistor (FET) region, a second FET region, and a diode region, forming a first gate stack in the first FET region and a second gate stack in the second FET region, forming a layer of spacer material over the second FET region and the second gate stack, forming a first source region and a first drain region in the first FET region and a first diode layer in the diode region using a first epitaxial growth process, forming a hardmask layer over the first source region, the first drain region, the first gate stack and a portion of the first diode layer, and forming a second source region and a second drain region in the first FET region and a second diode layer on the first diode layer using a second epitaxial growth process.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
摘要:
MOSFETs and methods for making MOSFETs with a recessed channel and abrupt junctions are disclosed. The method includes creating source and drain extensions while a dummy gate is in place. The source/drain extensions create a diffuse junction with the silicon substrate. The method continues by removing the dummy gate and etching a recess in the silicon substrate. The recess intersects at least a portion of the source and drain junction. Then a channel is formed by growing a silicon film to at least partially fill the recess. The channel has sharp junctions with the source and drains, while the unetched silicon remaining below the channel has diffuse junctions with the source and drain. Thus, a MOSFET with two junction regions, sharp and diffuse, in the same transistor can be created.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate, forming a raised source region over the semiconductor substrate adjacent a source side of the gate structure, and forming silicide contacts on the raised source region, on the patterned gate structure, and on the semiconductor substrate adjacent a drain side of the gate structure. Thereby, a hybrid field effect transistor (FET) structure having a drain side Schottky contact and a raised source side ohmic contact is defined.
摘要:
Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
摘要:
In one exemplary embodiment, a semiconductor structure includes: a semiconductor-on-insulator substrate with a top semiconductor layer overlying an insulation layer and the insulation layer overlies a bottom substrate layer; at least one first device at least partially overlying and disposed upon a first portion of the top semiconductor layer, where the first portion has a first thickness, a first width and a first depth; and at least one second device at least partially overlying and disposed upon a second portion of the top semiconductor layer, where the second portion has a second thickness, a second width and a second depth, where at least one of the following holds: the first thickness is greater than the second thickness, the first width is greater than the second width and the first depth is greater than the second depth.