Abstract:
A spectroscopic system including a light source adapted to provide a beam of illumination; an optical system adapted to provide the beam of illumination to a sample and receive a spectroscopy signal from the sample and direct the spectroscopy signal to at least one single channel detector is provided. The optical system comprises an adjustable dispersing element for directing one or more spectral features of the spectroscopy signal to the at least one single channel detector. A calibration detector is adapted to determine a set point of the adjustable dispersing element; and a source synchronization component is adapted to synchronize an operation of the light source and the at least one single channel detector. A method of calibrating a dispersing element of a spectrometer is also provided.
Abstract:
A programmable Raman transducer is disclosed for detecting the presence or absence of a preselected compound in a sample. The transducer, in a preferred embodiment, includes a laser source for generating laser light for illuminating the sample. Collector optics, absent a spatial filter, are used for collecting Raman-scattered light from the sample. A detector generates spectral data from the Raman-scattered light, and a digital processor compares the spectral data to a database of spectral data on selected compounds, including the preselected compound to generate a binary signal indicating presence or absence of the preselected compound.
Abstract:
An apparatus is described for the real-time identification of one or more selected components of a target material. In one embodiment, an infrared spectrometer and a separate Raman spectrometer are coupled to exchange respective spectral information of the target material preferably normalized and presented in a single graph. In an alternative embodiment, both an infrared spectrometer and a Raman spectrometer are included in a single instrument and a common infrared light source is used by both spectrometers. In another embodiment, a vibrational spectrometer and a stoichiometric spectrometer are combined in a single instrument and are coupled to exchange respective spectral information of the target material and to compare the spectral information against a library of spectra to generate a real-time signal if a selected component is present in the target material.
Abstract:
A method of reporting a binding event having increased sensitivity and multiplex capabilities. A reporter supra-nanoparticle assembly is provided that has an inner core made of a polymeric material, a coating on the inner core made of a polymeric material and a plurality of reporter nanoparticles, and a first active group on the surface of the coating.
Abstract:
Echelle gratings and microelectromechanical system (MEMS) digital micromirror device (DMD) detectors are used to provide rapid, small, and highly sensitive spectrometers. The new spectrometers are particularly useful for laser induced breakdown and Raman spectroscopy, but could generally be used with any form of emission spectroscopy. The new spectrometers have particular applicability in the detection of improvised explosive devices.
Abstract:
A Raman spectroscopy technique allows an analyte, a paramagnetic particle, and a spectral enhancement particle to combine in solution and for the combination product to be localized by a magnetic field for analysis. The spectral enhancement particle may be comprised of an active SERS metal particle with or without a material coating. The spectral enhancement particle may function as a reporter for the presence of the analyte or merely increase the magnitude of the Raman spectrum of the analyte. The technique is applicable to both immunoassays and chemical assays. Multiple spectral enhancement particle reporters may be measured in a single assay that can detect multiple analytes using the SERS effect.