Abstract:
A method is disclosed for analyzing keratinized tissue, particularly fingernails, of a subject to diagnose osteoporosis and bone fracture risk. A Raman spectrum of a sample of keratinized tissue is generated. Broad spectral background features of the spectrum are removed, preferably by using Fourier transform analysis. Peak heights of Raman features of interest, particularly the S—S bond of cystine, are measured. These peak height measurements are normalized using reference peak heights of Raman features that are invariant between normal and osteoporotic subjects, such as the CH2 bending peak.
Abstract:
A system, method and apparatus for taking a Raman spectrum of a sample is disclosed. In one embodiment, for example, an integrated Raman spectrometer is provided. In another embodiment, a portable Raman spectrometer is provided. In another embodiment, a Raman spectrometer is provided comprising a collimated beam tube for transmitting excitation radiation to an external optical system, such as a microscope, a telescope or a camera lens. In another embodiment, a method for correcting a Raman spectrum for background interference is provided. In yet another embodiment, a method for rejecting fluorescence in a Raman spectrometer is provided. A chemical reactor comprising a built-in Raman detector for monitoring a chemical reaction in a reaction chamber of the reactor is also provided.
Abstract:
A spectroscopic assay is provided. The assay comprises: a motive particle configured to move within a solution, the motive particle comprising a first analyte binding reagent for selectively binding to a target analyte; and a spectroscopic reporter particle configured to provide a predetermined spectroscopic signal in response to being interrogated by a spectrometer, the spectroscopic reporter particle comprising a second analyte binding reagent for selectively binding to the target analyte, wherein the motive particle and the spectroscopic reporter particle are configured to provide a sandwich assay in the presence of the target analyte via the first and second analyte binding reagents.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable minor, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable mirror, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
A spectroscopic system is provided. In one embodiment, the spectroscopic system comprises a light source adapted to provide a beam of illumination; an optical system adapted to provide the beam of illumination to a sample and receive a spectroscopy signal from the sample and direct the spectroscopy signal to at least one single channel detector, wherein the optical system comprises an adjustable dispersing element for directing one or more spectral features of the spectroscopy signal to the at least one single channel detector; a calibration detector adapted to determine a set point of the adjustable dispersing element; and a source synchronization component adapted to synchronize an operation of the light source and the at least one single channel detector. A method of calibrating a dispersing element of a spectrometer is also provided. In one embodiment, the method comprises determining a set point along a path of an adjustable dispersing element, wherein the set point corresponds to a position of the dispersing element where a calibration signal of a spectrometer is detected at a calibration sensor of the spectrometer; adjusting the position of the dispersing element along the path by a predetermined offset measurement from the set point; and directing at least a portion of a spectroscopic signal from the dispersing element to a spectroscopic signal detector of the spectrometer.
Abstract:
A method is disclosed for analyzing keratinized tissue, particularly fingernails, of a subject to diagnose osteoporosis and bone fracture risk. A Raman spectrum of a sample of keratinized tissue is generated. Broad spectral background features of the spectrum are removed, preferably by using Fourier transform analysis. Peak heights of Raman features of interest, particularly the S—S bond of cystine, are measured. These peak height measurements are normalized using reference peak heights of Raman features that are invariant between normal and osteoporotic subjects, such as the CH2 bending peak.
Abstract:
An apparatus is described for the real-time identification of one or more selected components of a target material. In one embodiment, an infrared spectrometer and a separate Raman spectrometer are coupled to exchange respective spectral information of the target material preferably normalized and presented in a single graph. In an alternative embodiment, both an infrared spectrometer and a Raman spectrometer are included in a single instrument and a common infrared light source is used by both spectrometers. In another embodiment, a vibrational spectrometer and a stoichiometric spectrometer are combined in a single instrument and are coupled to exchange respective spectral information of the target material and to compare the spectral information against a library of spectra to generate a real-time signal if a selected component is present in the target material.
Abstract:
An assay method and kit for detecting a chemical. The method and kit utilize a metal surface capable of surface enhanced Raman Scattering. The metal surface may be provided in the form of one or more nanoparticles, to increase the surface enhanced Raman Scattering capability of the metal surface. The nanoparticles may be treated with one or more additives to further enhance or maintain the surface enhanced Raman Scattering capability of the nanoparticles.
Abstract:
A spectroscopic assay is provided. The assay comprises: a motive particle configured to move within a solution, the motive particle comprising a first analyte binding reagent for selectively binding to a target analyte; and a spectroscopic reporter particle configured to provide a predetermined spectroscopic signal in response to being interrogated by a spectrometer, the spectroscopic reporter particle comprising a second analyte binding reagent for selectively binding to the target analyte, wherein the motive particle and the spectroscopic reporter particle are configured to provide a sandwich assay in the presence of the target analyte via the first and second analyte binding reagents.