Abstract:
Novel sorption cooling devices capable of providing cooling over an extended period of time are disclosed. The sorption cooling devices are particularly useful for temperature-controlled shipping containers that are required to maintain a temperature below ambient for a time sufficient to complete delivery of the container and its contents. The shipping containers can be utilized to cost-effectively transport temperature-sensitive products.
Abstract:
A sorption cooling device capable of providing cooling over an extended period of time. The sorption cooling device is particularly useful in a temperature-controlled shipping container that is required to maintain a temperature below ambient for an extended period of time. In one embodiment, the cooling device includes a means for restricting the flow of refrigerant liquid to control the degree of cooling over an extended period of time.
Abstract:
A sorption cooling device adapted to cool a gas or liquid flowing through a conduit. The cooling device has a high cooling density and a user can independently control the cooling rate. The cooling device can be incorporated in a number of apparatus and in one embodiment is incorporated in a personnel cooling apparatus, such as a closed-loop breathing apparatus or a body cooler.
Abstract:
A sorption cooling device adapted to cool a gas or liquid flowing through a conduit. The cooling device has a high cooling density and a user can independently control the cooling rate. The cooling device can be incorporated in a number of apparatus and in one embodiment is incorporated in a personnel cooling apparatus, such as a closed-loop breathing apparatus or a body cooler.
Abstract:
The present invention relates to low dielectric constant nanoporous silica films and to processes for their manufacture. A substrate, e.g., a wafer suitable for the production of an integrated circuit, having a plurality of raised lines and/or electronic elements present on its surface, is provided with a relatively high porosity, low dielectric constant, silicon-containing polymer film composition.
Abstract:
A process for the manufacture of nanoporous silica dielectric films by vapor deposition of silica precursors on a substrate. The process provides for vaporizing at least one alkoxysilane composition; depositing the vaporized alkoxysilane composition onto a substrate; exposing the deposited alkoxysilane composition to a water vapor, and either an acid or a base vapor; and drying the exposed alkoxysilane composition, thereby forming a relatively high porosity, low dielectric constant, silicon containing polymer composition on the substrate.