Abstract:
The invention includes a method for preparing and top coating an item made of powder coated MDF (or other substrate containing wood) with the end result of improved visual and tactile smoothness; the invention includes the steps of cutting and machining the part, pre-powder preparation and sanding of the part, powder coating the part, post-powder preparation and sanding, and applying the liquid top coat to the part, resulting in a smoother finish than is currently available in any other powder coated MDF finish while requiring less coats than similar liquid paint finishes.
Abstract:
The present invention is a method and apparatus for remote curing of resin-coated surfaces and articles by means of a vaporous curing agent. The method of the present invention includes the steps: (a) providing a surface of the substrate with a layer of a coating precursor comprising a curable material and a stabilized curing agent that is adapted to react with a gaseous, vaporous or aerosol initiating agent to activate the stabilized curing agent so as to cause the curable material to undergo a curing reaction; (b) subjecting the coating precursor to the gaseous, vaporous or aerosol initiating agent for sufficient time to initiate the curing reaction, and allowing the coating precursor to form a cured coating on the substrate. Another variation of the method of the present invention involves the reversal of the positions of the active compounds utilizing the interaction between the gaseous, vaporous or aerosol curing agent and coating precursor comprising a curable material and initiating agent.
Abstract:
A nano-structured surface includes a substrate layer, and a plurality of immobilized nanoparticles on the substrate layer. The surface has a water contact angle of greater than 145 degrees. An in situ method of fabricating a nano-structured surface includes treating a substrate layer with a mixture that includes a silica precursor, a water-soluble catalyst, and a low-surface-energy compound to form a treated substrate layer, and curing said treated substrate layer in the atmosphere of ammonia to form a nano-structured surface on the substrate layer.
Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapour-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapour-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
A method of removing a polyethylene coating from a glass surface includes the steps of contacting the glass surface with a solution of ammonium bifluoride (NH4HF2), rinsing the contacted surface with one or more rinses; and drying the surface. The thickness of the polyethylene slip coating applied to most commercial glass bottles is in the range 75-100nullm. The coating is removed by the process outlined above sufficiently to allow the application of an adherent decorative coating to the surface.
Abstract:
Ultra thin organo-ceramic and metal oxide films are prepared under room temperature and atmospheric conditions by exposing .alpha.,.omega.-functional siloxane oligomers and fatty acid metal soaps, respectively, to a combination of ultraviolet light (UV) and ozone (O.sub.3). The process includes the steps of preparing ultra thin .alpha.,.omega.-functional polysiloxane and fatty acid metal soap films using, but not limited to, the Langmuir-Blodgett (LB) technique. The LB technique permits construction of molecular monolayer or multilayer films on a variety of substrates. By using carboxylic acid end groups on the siloxane oligomers, metal ions can be incorporated into the SiOx film after UV-ozone exposure. This technique can be used to make electronically, optically, and chemically important organo-ceramic and metal oxide films on temperature sensitive substrates.
Abstract:
A population of nanocomposite particles including nanoparticles and poly (ethylene imine) (PEI) grafted thereto. In some embodiments there is no intervening layer between the nanoparticles and the PEI. Methods of making and using nanocomposite particles are also disclosed.
Abstract:
Self-healable, omniphobic coatings and related methods are provided. In embodiments, a self-healable, omniphobic coating comprises a matrix of crosslinked, entangled hydrogel polymers, the hydrogel polymers comprising hydroxyl (OH) groups, hydroxyl group precursors, or both, and nanoparticles distributed throughout the matrix; and fluorinated silane molecules covalently bound to the matrix.