Abstract:
A present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.
Abstract:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
Abstract:
The present memory device includes first and second electrodes, first and second insulating layers between the electrodes, the first insulating layer being in contact with the first electrode, the second insulating layer being in contact with the second electrode, and a metal layer between the first and second insulating layers. Further included may be a first oxide layer between and in contact with the first insulating layer and the metal layer, and a second oxide layer between and in contact with the second insulating layer and the metal layer.
Abstract:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
Abstract:
In one embodiment, a method of fabricating an integrated circuit includes the steps of: (i) forming composite spacers on sidewalls of a transistor gate, each of the composite spacers comprising a first liner having a stepped portion and a disposable spacer material over the stepped portion; (ii) forming a source/drain region by performing ion implantation through a portion of the first liner over the source/drain region; (iii) replacing the disposable spacer material with a second liner formed over the first liner after forming the source/drain region; (iv) forming a pre-metal dielectric over the second liner; and (v) forming a self-aligned contact through the pre-metal dielectric. Among other advantages, the method allows for an increased contact area for a self-aligned contact.
Abstract:
A present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.
Abstract:
The present memory device includes first and second electrodes, first and second insulating layers between the electrodes, the first insulating layer being in contact with the first electrode, the second insulating layer being in contact with the second electrode, and a metal layer between the first and second insulating layers. Further included may be a first oxide layer between and in contact with the first insulating layer and the metal layer, and a second oxide layer between and in contact with the second insulating layer and the metal layer.
Abstract:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
Abstract:
The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
Abstract:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. The first transistor element comprises at least one first amorphous region and the second transistor element comprises at least one second amorphous region. A stress-creating layer is formed over the first transistor element. The stress-creating layer does not cover the second transistor element. A first annealing process is performed. The first annealing process is adapted to re-crystallize the first amorphous region and the second amorphous region. After the first annealing process, a second annealing process is performed. The stress-creating layer remains on the semiconductor substrate during the second annealing process.