摘要:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. The first transistor element comprises at least one first amorphous region and the second transistor element comprises at least one second amorphous region. A stress-creating layer is formed over the first transistor element. The stress-creating layer does not cover the second transistor element. A first annealing process is performed. The first annealing process is adapted to re-crystallize the first amorphous region and the second amorphous region. After the first annealing process, a second annealing process is performed. The stress-creating layer remains on the semiconductor substrate during the second annealing process.
摘要:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. The first transistor element comprises at least one first amorphous region and the second transistor element comprises at least one second amorphous region. A stress-creating layer is formed over the first transistor element. The stress-creating layer does not cover the second transistor element. A first annealing process is performed. The first annealing process is adapted to re-crystallize the first amorphous region and the second amorphous region. After the first annealing process, a second annealing process is performed. The stress-creating layer remains on the semiconductor substrate during the second annealing process.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
A plasma etch chemistry and etch methodology is provided to improve critical dimension control for openings formed into and/or through a semiconductor thin film. According to an embodiment, the plasma etch chemistry includes an etchant mixture comprising a first etchant of the formula CxHyFz (where x≧2, y≧1 and z≧2) and a second etchant other than the first etchant to form the openings. The relationship of x, y and z may be such that y+z equals an even number ≦2x+2. According to an alternative embodiment, the plasma etch chemistry further includes strained cyclic (hydro)fluorocarbon. The plasma etch chemistry may be used to form openings in the layer in a single-etch step. In a further embodiment, the plasma etch chemistry described herein may etch less than the entire thickness of the layer, and a second plasma etch chemistry substantially free of the first etchant and strained cyclic (hydro)fluorocarbons etches the remainder of the layer to form the openings. Such an etch methodology advantageously reduces the risk of etching the materials underlying the layer.
摘要翻译:提供等离子体蚀刻化学和蚀刻方法以改进形成于和/或穿过半导体薄膜的开口的临界尺寸控制。 根据实施例,等离子体蚀刻化学品包括蚀刻剂混合物,其包含式C x H y F z(其中x> = 2,y> = 1和z> = 2)的第一蚀刻剂和除第一蚀刻剂之外的第二蚀刻剂, 开口 x,y和z的关系可以使得y + z等于偶数<= 2x + 2。 根据替代实施例,等离子体蚀刻化学品还包括应变的环状(氢)氟碳化合物。 等离子体蚀刻化学可以用于在单蚀刻步骤中在层中形成开口。 在另一个实施方案中,本文所述的等离子体蚀刻化学蚀刻可以蚀刻小于层的整个厚度,并且基本上不含第一蚀刻剂的第二等离子体蚀刻化学品和应变的环状(氢)氟碳化物蚀刻该层的其余部分,形成 开口 这种蚀刻方法有利地降低了蚀刻层之下的材料的风险。
摘要:
The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
摘要:
In an electronic device, a diode and a resistive memory device are connected in series. The diode may take a variety of forms, including oxide or silicon layers, and one of the layers of the diode may make up a layer of the resistive memory device which is in series with that diode.
摘要:
A method of forming oxide-nitride-oxide (ONO) dielectric of a SONOS-type nonvolatile storage device is disclosed. According to a first embodiment, a method may include the steps of forming a tunneling dielectric (step 102), forming a charge storing dielectric (step 104), and forming a top insulating layer (step 106) all in the same wafer processing tool. According to various aspects of the embodiments, all layers of an ONO dielectric of a SONOS-type device may be formed in the same general temperature range. Further, a tunneling dielectric may include a tunnel oxide formed with a long, low pressure oxidation, and a top insulating layer may include silicon dioxide formed with a preheated source gas.
摘要:
A method of making a semiconductor structure, includes annealing a structure in a deuterium-containing atmosphere. The structure includes (i) a substrate, (ii) a gate dielectric on the substrate, (iii) a gate on the gate dielectric, (iv) an etch-stop layer on the gate, and (v) an interlayer dielectric on the etch-stop layer.
摘要:
A present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.