摘要:
Printable media sensing devices, systems and methods are disclosed herein. An array of light emitters projects light through a printable media sheet for detection by a corresponding array of light sensors. A processor is operably connected to the array of light emitters and light sensors, and is configured to activate the light emitters, and receive output signals from the light sensors, and permit the accurate detection and determination of the locations of top of form (TOF) and bottom of form (BOF) for a given printable media sheet, as well as multiple widths corresponding to such sheet. According to some embodiments, the locations of labels on a sheet may also be detected with heightened accuracy, as may regions having no labels disposed thereover.
摘要:
A proximity sensor includes a printed circuit board (PCB); a first cup and a second cup embedded in the PCB; an electromagnetic radiation transmitter operably mounted in the first cup; and an electromagnetic radiation receiver operably mounted in the second cup.
摘要:
Various embodiments of a compact optical proximity sensor with a ball grid array and windowed or apertured substrate are disclosed. In one embodiment, the optical proximity sensor comprises a printed circuit board (“PCB”) substrate comprising an aperture and a lower surface having electrical contacts disposed thereon, an infrared light emitter and an infrared light detector mounted on an upper surface of the substrate, an integrated circuit located at least partially within the aperture, a molding compound being disposed between portions of the integrated circuit and substrate, an ambient light detector mounted on an upper surface of the integrated circuit, first and second molded infrared light pass components disposed over and covering the infrared light emitter and the infrared light detector, respectively, and a molded infrared light cut component disposed between and over portions of the first and second infrared light pass components.
摘要:
Various embodiments of a miniaturized optical proximity sensor are disclosed. In one embodiment, an ambient light sensor and a light detector are mounted on first and second spacers, which in turn are mounted to a top surface of an integrated circuit die-attached to a substrate. An optically-transmissive infrared pass compound is molded over the ambient light sensor, the light detector, the integrated circuit, alight emitter and peripheral portions of the substrate. Next, an optically non-transmissive infrared cut compound is molded to over the optically-transmissive infrared pass compound to provide a miniaturized optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.
摘要:
An RC receiver device and an ambient light photosensor (ALPS) device are mounted on a single mounting device (e.g., circuit board or lead frame substrate) such that they are part of a single composite assembly. This reduces the amount of space that is consumed in electronic devices in which the assemblies are installed, which allows the electronic devices to be made smaller in size. In addition, implementing both the RC receiver device and the ALPS device in a single composite assembly lowers costs associated with manufacturing, assembling and shipping the composite assembly.
摘要:
An RC receiver device and an ambient light photosensor (ALPS) device are mounted on a single mounting device (e.g., circuit board or lead frame substrate) such that they are part of a single composite assembly. This reduces the amount of space that is consumed in electronic devices in which the assemblies are installed, which allows the electronic devices to be made smaller in size. In addition, implementing both the RC receiver device and the ALPS device in a single composite assembly lowers costs associated with manufacturing, assembling and shipping the composite assembly.
摘要:
Disclosed are various embodiments of an infrared proximity sensor package comprising an infrared transmitter die, an infrared receiver die, a housing comprising sidewalls, a first recess, a second recess, a partitioning divider disposed between the first and second recesses, and an overlying shield comprising an infrared-absorbing material. The transmitter die is positioned in the first recess, and the receiver die is positioned within the second recess. The partitioning divider comprises liquid crystal polymer (LCP) such that the partitioning divider and the infrared-absorbing material of the shield cooperate together to substantially attenuate and absorb undesired infrared light that might otherwise become internally-reflected within the housing or incident upon the receiver as a false proximity or object detection signal.
摘要:
An optical proximity sensor and housing for the same are disclosed. The housing is provided with at least two support structures and at least two modules. A first of the support structures transfers vertical forces applied to one end of a module to an opposite end of the opposite module. A second of the support structures inhibits a pivoting of the modules about the first support structure.
摘要:
Various embodiments of an optical proximity sensor having a lead frame and no overlying metal shield are disclosed. In one embodiment, a light emitter and a light detector are mounted on a lead frame comprising a plurality of discrete electrically conductive elements having upper and lower surfaces, at least some of the elements not being electrically connected to one another. An integrated circuit is die-attached to an underside of the lead frame. An optically-transmissive infrared pass compound is molded over the light detector and the light emitter and portions of the lead frame. Next, an optically non-transmissive infrared cut compound is molded over the optically-transmissive infrared pass compound to provide an optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.
摘要:
An optical proximity sensor is provided that comprises an infrared light emitter an infrared light detector, a first molded optically transmissive infrared light pass component disposed over and covering the light emitter and a second molded optically transmissive infrared light pass component disposed over and covering the light detector. Located in-between the light emitter and the first molded optically transmissive infrared light pass component, and the light detector and the second molded optically transmissive infrared light pass component is a gap. Layers of infrared opaque, attenuating or blocking material are disposed on at least some of the external surfaces forming the gap to substantially attenuate or block the transmission of undesired direct, scattered or reflected light between the light emitter and the light detector, and thereby minimize optical crosstalk and interference between the light emitter and the light detector.