Abstract:
A method of performing cell search includes receiving a primary synchronization signal (PSS) comprising a primary synchronization code (PSC) and receiving a secondary synchronization signal (SSS) comprising a first secondary synchronization code (SSC) and a second SSC, wherein the SSS includes a first SSS and a second SSS, the first SSC and the second SSC are arranged in that order in the first SSS, and the second SSC and the first SSC are arranged in that order in the second SSS. Detection performance on synchronization signals can be improved, and cell search can be performed more reliably.
Abstract:
A method is provided for transmitting, by a base station, signals in a communication system. Carrier aggregation configuration information is transmitted to a mobile station via a primary carrier band of the mobile station. The carrier aggregation configuration information informs the mobile station of a subsidiary carrier band for the mobile station. Uplink control information for the subsidiary carrier band is received from the mobile station via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band.
Abstract:
A method for transmitting a reference signal by a user equipment (UE) in a wireless communication system. The UE generates an uplink reference signal in a subframe comprising first, second, third, fourth, fifth, sixth and seventh orthogonal frequency division multiplexing (OFDM) symbols in time domain and a plurality of subcarriers in frequency domain. The UE transmits the uplink reference signal to a base station in the third, fourth and fifth OFDM symbols. The transmitted uplink reference signal is hopped in the frequency domain, based on a cell specific hopping parameter.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
The methods and an apparatuses for scanning in WLAN are disclosed. A method of a scanning of a station (STA) may include monitoring a channel during a probedelay based on a MAC sublayer management entity (MLME)-SCAN.request primitive indicating an active scanning for a target Access Point (AP), receiving a frame including a channel congestion indicator from an AP during the probedelay, generating a MLME-SCAN.change request primitive to request a change of a scanning type parameter included in the MLME-SCAN.request primitive when the channel congestion indicator indicates that the channel is congested, generating a MLME-SCAN.change confirm primitive to confirm the change of the scanning type parameter included in the MLME-SCAN.request primitive as a response of the MLME-SCAN.change request primitive, and performing a passive scanning for the target AP based on the MLME-SCAN.change confirm primitive.
Abstract:
A sequence generation method for allowing a reception end to effectively detect a sequence used for a specific channel of an OFDM communication system, and a signal transmission/reception method using the same are disclosed. During the sequence generation, an index is selected from among the index set having the conjugate symmetry property between indexes, and a specific part corresponding to the frequency “0” is omitted from a transmitted signal. In addition, a reception end can calculate a cross-correlation value between a received (Rx) signal and each sequence using only one cross-correlation calculation based on the conjugate symmetry property.
Abstract:
A method and device for transmitting uplink control signals in a wireless communication system, the method including: reserving a preassigned scheduling request (SR) physical uplink control channel (PUCCH) resource used for transmission of a SR; determining a frequency domain sequence and an orthogonal sequence based on the preassigned SR PUCCH resource; spreading an ACK/NACK for Hybrid Automatic Repeat Request (HARQ) with the frequency domain sequence and the orthogonal sequence to generate a mapped sequence; and transmitting the mapped sequence.
Abstract:
Method for generating reference signal sequence using grouping is explained. In this method, base sequences are grouped such that each group contains at least one base sequence of each length, so UE(s) can use various length sequences as a reference signal. And in this method, inter cell interference caused by using various length sequence as a reference signal sequence can be minimized by grouping sequences having the high cross correlation relation.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.