Abstract:
A compressor having a lower frame and a method of manufacturing the same are disclosed. The compressor may include a cylindrical shell, a rotational shaft rotatably mounted in the cylindrical shell, a rotor and a stator that rotates the rotational shaft, a compression device driven by the rotational shaft, a lower bearing configured to rotatably support one side of the rotational shaft, a lower frame configured to support the lower bearing, the lower frame being configured to be press-fitted into a lower end portion of the cylindrical shell, and a base configured to seal the lower end portion of the cylindrical shell. The lower frame may include a main body configured to be press-fitted onto an inner circumferential surface of the cylindrical shell and a flange that extends from the main body, the flange being configured to limit a press-fit depth by contacting the lower end portion of the cylindrical shell.
Abstract:
An upper back pressure type scroll compressor is provided having a back pressure chamber. The scroll compressor may include a casing, a discharge cover, a main frame, a first scroll supported by the main frame, and a second scroll forming a suction chamber, an intermediate pressure chamber, and a discharge chamber together with the first scroll. The scroll compressor may also include a back pressure plate coupled to the second scroll. The back pressure plate may include a cavity with which the intermediate pressure chamber of the second scroll communicates. The scroll compressor may further include a floating plate movably coupled to the back pressure plate so as to seal an upper portion of the cavity.
Abstract:
A compressor having a lower frame and a method of manufacturing the same are disclosed. The compressor may include a cylindrical shell, a rotational shaft rotatably mounted in the cylindrical shell, a rotor and a stator that rotates the rotational shaft, a compression device driven by the rotational shaft, a lower bearing configured to rotatably support one side of the rotational shaft, a lower frame configured to support the lower bearing, the lower frame being configured to be press-fitted into a lower end portion of the cylindrical shell, and a base configured to seal the lower end portion of the cylindrical shell. The lower frame may include a main body configured to be press-fitted onto an inner circumferential surface of the cylindrical shell and a flange that extends from the main body, the flange being configured to limit a press-fit depth by contacting the lower end portion of the cylindrical shell.
Abstract:
A scroll compressor is provided that may include a casing including a rotational shaft, a discharge cover fixed inside of the casing to partition the inside of the casing into a suction space and a discharge space, a first scroll that is revolved by rotation of the rotational shaft, a second scroll that defines a plurality of compression chambers together with the first scroll, the second scroll having an intermediate pressure discharge hole that communicates with a compression chamber having an intermediate pressure of the plurality of compression chambers, a back pressure plate that defines a back pressure chamber that accommodates a refrigerant discharged from the intermediate pressure discharge hole, a floating plate movably disposed on or at a side of the back pressure plate to define the back pressure chamber together with the back pressure plate, and an elastic member disposed between the floating plate and the discharge cover to provide an elastic force to the floating plate.
Abstract:
A high-voltage connector assembly and a motor-operated compressor including the same are disclosed. The high-voltage connector assembly according to embodiments disclosed herein may include a cover defining an outer appearance and a shielding plate designed to shield an electrical noise signal. The cover and the shielding plate may be integrally formed by a double shot molding or insert injection molding. Accordingly, manufacturing time and costs of the cover and the shielding plate may be reduced. In addition, the cover and the shielding plate may be coupled to each other in a more stable manner. Further an outer circumferential portion of the shielding plate may have a higher roughness than the cover. Alternatively, the outer circumferential portion of the shielding plate may be provided with a plate protrusion or an uneven portion. Accordingly, a contact area between the shielding plate and the cover may be increased.
Abstract:
A scroll compressor is provided in which a center of a back pressure chamber is eccentrically disposed relative to a center of a fixed scroll. For example, the center of the back pressure chamber may be moved towards a center of an orbiting scroll at a time of discharge, thereby preventing displacement of the fixed scroll and ensuring stability in orbital movement of the orbiting scroll.
Abstract:
A scroll compressor is provided. The scroll compressor may include a casing including a rotational shaft, a discharge cover fixed at an inside of the casing to partition the inside of the casing into a suction space and a discharge space, a first scroll rotated by the rotational shaft to perform an orbiting motion, a second scroll disposed on or at a side of the first scroll to define a plurality of compression chambers together with the first scroll, the second scroll having an intermediate pressure discharge hole that communicates with a compression chamber having an intermediate pressure among the plurality of compression chambers, a back pressure plate coupled to the second scroll, the back pressure plate having an intermediate pressure suction hole that communicates with the intermediate pressure discharge hole, a floating plate movably disposed on or at a side of the back pressure plate to define a back pressure chamber together with the back pressure plate, and a discharge guide defined in the first scroll or the second scroll to guide discharge of a refrigerant within the back pressure chamber.
Abstract:
A scroll compressor is provided that may include a casing including a rotational shaft, a cover fixed inside of the casing to partition the inside of the casing into a suction space and a discharge space, a first scroll that is revolved by rotational of the rotational shaft, a second scroll disposed on or at a side of the first scroll to define a plurality of compression chambers together with the first scroll, the second scroll having an intermediate pressure discharge hole that communicates with a compression chamber having an intermediate pressure of the plurality of compression chambers, a back pressure plate coupled to the second scroll, the back pressure plate having an intermediate pressure suction hole that communicates with the intermediate pressure discharge hole, and a floating plate movably disposed on or at a side of the back pressure plate to define the back pressure chamber together with the back pressure plate. The discharge space may have a volume greater by a set ratio or more than a volume of the back pressure chamber.