Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A method is provided for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) in a wireless communication system. A first DMRS sequence, which is associated with a first layer, and a second DMRS sequence, which is associated with a second layer, are transmitted to a base station. A first orthogonal cover code (OCC) is applied to the first and second DMRS sequences. A third DMRS sequence, which is associated with a third layer, and a fourth DMRS sequence, which is associated with a fourth layer, are transmitted to the base station. A second OCC is applied to the third and fourth DMRS sequences.
Abstract:
A method for transmitting a sounding reference signal (SRS) at a user equipment in a time division duplex (TDD) communication system; and the user equipment are discussed. The method includes receiving downlink control information (DCI) including a request of the SRS transmission. The DCI includes information for receiving downlink data using multiple antennas by the user equipment. The method further includes transmitting the SRS to the base station according to the request of the SRS transmission.
Abstract:
A technique for receiving and transmitting downlink reference signals is disclosed. When transmitting downlink data demodulation reference signals (DMRS) (or reference signals for downlink data demodulation) by using two or more layers, the DMRS of each layer may be multiplexed by using a code division multiplexing method and then transmitted. The DMRS for each of the two or more layers may be used for one user equipment or for two or more user equipments. And, downlink control signals for transmitting and receiving such DMRS may be configured to have the same format regardless of a single-user mode (or SU-MIMO mode) or a multi-user mode (or MU-MIMO mode), thereby being used.
Abstract:
A method of transmitting a reference signal by a base station in a wireless communication system is provided. The method includes: generating a plurality of reference signals for channel measurement, wherein the plurality of reference signals for channel measurement are different types; and transmitting the plurality of reference signals for channel measurement, wherein the plurality of reference signals for channel measurement are transmitted using one or more subframes as a duty cycle.
Abstract:
A method of transmitting control information includes dividing frequency bandwidth into ranges to which the same PMI (precoding matrix index) is applied, obtaining multiple antenna information by the range to which the same PMI is applied and transmitting the multiple antenna information. Since multiple antenna information is transmitted by the unit of a range to which the same PMI is applied, radio resources allocated for transmitting the multiple antenna information may be reduced, thereby enhancing data transmission efficiency.
Abstract:
A method and apparatus are described for transmitting a reference signal in a multi-antenna system. A terminal generates a plurality of reference signal sequences to which cyclic shift values different from each other are allocated, generates an orthogonal frequency division multiplexing (OFDM) symbol to which the plurality of reference signal sequences are mapped, and transmits the OFDM symbol to a base station through a plurality of antennas. The respective cyclic shift values allocated to the respective reference signal sequences are determined on the basis of a parameter n indicated by a cyclic shift field transmitted from a physical downlink control channel (PDCCH).
Abstract:
Provided is a method for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) for a physical uplink shared channel (PUSCH) in a wireless communication system. A terminal receives a cyclic shift field, which indicates a first value and a second value, through a physical downlink control channel (PDCCH) from a base station, generates a first DMRS sequence and a second DMRS sequence, which are associated with a first layer and a second layer respectively, by using a first cyclic shift and a second cyclic shift, respectively, which are determined based on the first value and the second value respectively, and transmits the first DMRS sequence and the second DMRS sequence to the base station. Furthermore, the first value and the second value are separated by a maximum value corresponding to a total number of possible cyclic shifts.
Abstract:
A method for multiplexing a data information stream, including a systematic symbol and a non-systematic symbol, and a control information stream of at least three types in a wireless mobile communication system is disclosed. The method includes mapping the data information stream to a resource area so that the systematic symbol is not mapped to a specific resource area to which the control information stream is mapped, and mapping the control information stream to the specific resource area.
Abstract:
The present invention relates to a method for transmitting, by a base station, a downlink signal using a plurality of transmission antennas comprises the steps of: applying a precoding matrix indicated by the PMI, received from a terminal, in a codebook to a plurality of layers, and transmitting the precoded signal to the terminal through a plurality of transmission antennas. Among precoding matrices included in the codebook, a precoding matrix for even number transmission layers can be a 2×2 matrix containing four matrices (W1s), the matrix (W1) having rows of a number of transmission antennas and columns of half the number of transmission layers, the first and second columns of the first row in the 2×2 matrix being multiplied by 1, the first column of the second row being multiplied by coefficient “a” of a phase, and the first column of the second row being multiplied by “−a”.