Abstract:
An optical member includes: a light guide portion; a three-dimensional effect forming portion; and a multi-effect forming portion. The three-dimensional effect forming portion comprises multiple main patterns sequentially arranged on the first surface in a first direction and having respective inclined surfaces. The multiple main patterns guide an incident beam to a first surface direction or a second surface direction, thereby creating a line-shaped beam of a first path crossing at right angles to each pattern extension direction of the multiple patterns. The multi-effect forming portion comprises multiple optical patterns sequentially arranged in a second direction crossing a first direction and configured for converting a single line-shaped beam of the first path into multiple line-shaped beams.
Abstract:
Provided are an optical member capable of implementing optical images having desired shapes through a pattern design, and a lighting device using the same, the optical member including: a three-dimensional effect forming portion provided on a first surface of a base substrate; and a multiple effect forming portion disposed in a lamination form with the three-dimensional effect forming portion, wherein the three-dimensional effect forming portion has multiple main patterns sequentially arranged in a first direction on the first surface and having respective inclined surfaces with an inclination angle with respect to the first surface, wherein the multiple main patterns implement a line shaped beam of a first path by guiding a first incident beam into a first surface direction through refraction or reflection from the inclined surfaces, wherein the multiple effect forming portion are sequentially arranged in a second direction crossing the first direction and has multiple optical patterns.
Abstract:
Provided are a light source module capable of providing a line shaped beam with various effects using optical patterns of both sides of a light guide layer optical pattern, and a lighting device having the light source module. The light source module, including: a first optical layer having a first surface, a second opposite to the first surface, and a first optical pattern on the first surface or the second surface; a second optical layer having a third surface facing the second, a fourth surface opposite to the third surface, and a second optical pattern on the third surface or the fourth surface; a light guide layer on the first optical layer; and a light source part supplying an incident beam into the light guide layer.
Abstract:
Provided are a light source module capable of providing a line shaped beam with various effects using optical patterns of both sides of a light guide layer optical pattern, and a lighting device having the light source module. The light source module, including: a first optical layer having a first surface, a second opposite to the first surface, and a first optical pattern on the first surface or the second surface; a second optical layer having a third surface facing the second, a fourth surface opposite to the third surface, and a second optical pattern on the third surface or the fourth surface; a light guide layer on the first optical layer; and a light source part supplying an incident beam into the light guide layer.
Abstract:
Provided are an optical member capable of implementing optical images having desired shapes through a pattern design, and a lighting device using the optical member, the optical member including: a base substrate; multiple patterns sequentially arranged on a first surface of the base substrate and having inclined surfaces with an inclination angle with respect to the first surfaces; and a reflective portion on the base substrate or the multiple patterns, wherein the multiple patterns implement a line shaped beam of a first path crossing at right angles to respective pattern extension directions of the multiple patterns by guiding a first incident beam into a first surface direction toward which the first surface looks or a second surface direction toward which a second surface of the base substrate opposite to the first surface looks, through refraction or reflection from the inclined surfaces.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer. Thus, the method can be provided with the following advantages; Because a wet etching time is adjusted, a width and a height of the nanowire to be produced can be adjusted; the nanowire can be produced at room temperature with a low cost; the nanowire can be produced in large quantities; and in spite of the mass production, the nanowire having high uniformity can be produced.
Abstract:
Provided is a lighting device capable of implementing optical images having desired shapes through a pattern design, the lighting device including: a light source portion having light sources; a light guide portion having a larger thickness than a height of a light emitting surface of the respective light sources and irradiating an incident beam from a side; a three-dimensional forming portion provided inside the light guide portion, on a first surface or on a second surface; and a reflective portion on the light guide portion or the three-dimensional effect forming portion, wherein the three-dimensional effect forming portion includes multiple patterns sequentially arranged and having respective inclined surfaces with inclination angles with respect to the first surface, wherein the multiple patterns guide light passing along the light guide portion into a first surface direction or a second surface direction, thereby implementing line shaped beams of a first path.