Abstract:
A lens according to an embodiment of the present invention comprises: a substrate; and a hydrophilic coating layer formed on the substrate and containing a polymer having a hydrophilic functional group. Accordingly, a lens having ultra-hydro-philicity and excellent abrasion resistance, and a lens assembly and a camera module including the same can be obtained.
Abstract:
Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.
Abstract:
A permanent magnet of an embodiment comprises: a base magnet represented by a-b-c (a includes a rare earth-based element, b includes a transition element, and c includes boron (B)); and a coating layer coated on a surface of the base magnet, wherein the coating layer comprises a compound containing a metal having magnetism, the compound including: a phosphor (P); and a metal belonging to the fourth period in the periodic table.
Abstract:
A touch window according to one embodiment comprises: a substrate having an effective area and an ineffective area; a sensing electrode arranged in the effective area and sensing a position; and a wiring arranged in the effective area and the ineffective area and electrically connecting to the sensing electrode, wherein the wiring comprises a first wiring and a second wiring such that the first wiring and the second wiring are vertically arranged.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
An electrode member according to an embodiment includes a first resin layer; and an electrode layer on the first resin layer, wherein the first resin layer has a thickness in the range of 1 μm to 25 μm.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer.
Abstract:
Provided is a method of manufacturing a nanowire, including: forming a plurality of grid patterns on a grid base layer; forming a sacrificial layer on the grid base layer on which the grid patterns are formed; producing a nanowire grid structure by forming a nanowire base layer on the sacrificial layer; forming a nanowire by wet etching the nanowire base layer; and separating the grid patterns from the nanowire by etching the sacrificial layer. Thus, the method can be provided with the following advantages; Because a wet etching time is adjusted, a width and a height of the nanowire to be produced can be adjusted; the nanowire can be produced at room temperature with a low cost; the nanowire can be produced in large quantities; and in spite of the mass production, the nanowire having high uniformity can be produced.