Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of conjugating a substrate includes exchanging a counter ion associated with a biomolecule with a lipophilic counter ion to form a biomolecule complex, dispersing the biomolecule complex in a nonaqueous solvent, and coupling the biomolecule complex to a substrate in the presence of the nonaqueous solvent.
Abstract:
A hydrogel network includes a hydrogel polymer having a coupling site, an oligonucleotide conjugated at a terminal end to the hydrogel polymer at the coupling site, and a functional moiety coupled between the terminal end of the oligonucleotide and the coupling site. Such a hydrogel network can be formed by a method including activating a coupling site of a substrate and binding a linker moiety coupled to a terminal end of an oligonucleotide to the activated coupling site, a functional moiety coupled between the terminal end of the oligonucleotide and the linker moiety.