Abstract:
An electromechanical strut and method of moving a closure member of a vehicle between an open position and a closed position is provided. The electromechanical strut includes a power drive unit including a motor, a leadscrew, a planetary gearset operably connecting the motor to the leadscrew, and an electromechanical brake assembly. The electromechanical strut further includes a telescoping unit including an extensible tube and a drive nut for converting rotary motion of the leadscrew into linear motion of the telescoping unit. The electromechanical brake assembly is selectively moveable between an engaged state, wherein the leadscrew is prevented from rotating to prevent relative axial movement between the power drive unit and the telescoping unit, and a disengaged state, wherein the leadscrew is permitted to rotate to allow relative axial movement between the power drive unit and the telescoping unit.
Abstract:
An electromechanical strut is provided for moving a pivotal closure member between an open position and a closed position relative to a motor vehicle body. The electromechanical strut includes a housing connected to one of the closure member and the motor vehicle body. An extensible shaft is connected to the other of the closure member and the motor vehicle body for slidable movement relative to the housing. A motor-gear assembly operably drives a rotatable power screw. A drive mechanism converts rotary motion of the power screw into linear motion of the extensible shaft to move the extensible shaft between a retracted position corresponding to the closed position of the closure member and an extended position corresponding to the open position of the closure member. A clutch/coupling assembly is operably disposed between the motor-gear assembly and the power screw and integrates a slip clutch device and a flexible coupling into a common unit.
Abstract:
An electromechanical strut for moving a closure member between open and closed positions relative to a vehicle body includes a housing having an inner surface bounding a cavity extending along a central axis between opposite first and second ends. A power screw is disposed in the cavity in operable communication with a motor, with a gear assembly operably connecting the motor to the power screw. An extensible member has an outer cover tube received in the housing cavity and a drive mechanism for converting rotary motion of the power screw into linear motion of the extensible member. An annular gap extends between the inner surface of the housing and an outer surface of the outer cover tube. An annular bushing is disposed within the annular gap to minimize laterally play between the housing and the outer cover tube.
Abstract:
A friction based counterbalance mechanism for coupling with a closure panel to assist in opening and closing of the closure panel for at least a portion of a path between a fully closed position and a fully open position of the closure panel, the counterbalance mechanism including: an elongate member positioned on a longitudinal axis extending between the proximal and distal ends of the counterbalance mechanism, the elongate member having a peripheral surface, the elongate member having a proximal end for coupling to one of the closure panel and a body of a vehicle; a travel member having a body and at least one friction member mounted on the body, the travel member positioned on the longitudinal axis for reciprocation there along and for providing contact between the at least one friction member and the peripheral surface, said contact for generating a friction force in a first region along the longitudinal axis and in a second region along the longitudinal axis; and a support member coupled to the travel element at a proximal end and for coupling at a distal end to the other of the closure panel and a body of a vehicle, the support member for guiding said reciprocation. The friction based counterbalance mechanism can be incorporated as part of a biasing strut such as a spring configured strut.
Abstract:
The present disclosure generally relates to a two-door closure system for a motor vehicle including a body having an A-pillar and a C-pillar being spaced from one another. According to an aspect of the disclosure, the closure system includes a front door having a front edge that is pivotably connected to the A-pillar. The closure system also includes a rear door that has a rearward edge that is pivotably coupled to the C-pillar of the vehicle body. At least one swivel hinge unit is provided that has a first pivot pin that is pivotably connected to the rearward edge of the rear door, and a second pivot pin for being pivotably connected to the C-pillar of the vehicle body to allow the rear door to initially pivot and translate away from the front door prior to pivoting the rear door between an open and closed position about the second pivot pin.
Abstract:
An electromechanical strut and method of moving a closure member of a vehicle between an open position and a closed position is provided. The electromechanical strut includes a power drive unit including a motor, a leadscrew, a planetary gearset operably connecting the motor to the leadscrew, and an electromechanical brake assembly. The electromechanical strut further includes a telescoping unit including an extensible tube and a drive nut for converting rotary motion of the leadscrew into linear motion of the telescoping unit. The electromechanical brake assembly is selectively moveable between an engaged state, wherein the leadscrew is prevented from rotating to prevent relative axial movement between the power drive unit and the telescoping unit, and a disengaged state, wherein the leadscrew is permitted to rotate to allow relative axial movement between the power drive unit and the telescoping unit.
Abstract:
A friction based counterbalance mechanism for coupling with a closure panel to assist in opening and closing of the closure panel for at least a portion of a path between a fully closed position and a fully open position of the closure panel, the counterbalance mechanism including: an elongate member positioned on a longitudinal axis extending between the proximal and distal ends of the counterbalance mechanism, the elongate member having a peripheral surface, the elongate member having a proximal end for coupling to one of the closure panel and a body of a vehicle; a travel member having a body and at least one friction member mounted on the body, the travel member positioned on the longitudinal axis for reciprocation there along and for providing contact between the at least one friction member and the peripheral surface, said contact for generating a friction force in a first region along the longitudinal axis and in a second region along the longitudinal axis; and a support member coupled to the travel element at a proximal end and for coupling at a distal end to the other of the closure panel and a body of a vehicle, the support member for guiding said reciprocation. The friction based counterbalance mechanism can be incorporated as part of a biasing strut such as a spring configured strut.
Abstract:
An electromechanical strut is provided for moving a pivotal closure member between an open position and a closed position relative to a motor vehicle body. The electromechanical strut includes a housing connected to one of the closure member and the motor vehicle body. An extensible shaft is connected to the other of the closure member and the motor vehicle body for slidable movement relative to the housing. A motor-gear assembly operably drives a rotatable power screw. A drive mechanism converts rotary motion of the power screw into linear motion of the extensible shaft to move the extensible shaft between a retracted position corresponding to the closed position of the closure member and an extended position corresponding to the open position of the closure member. A clutch/coupling assembly is operably disposed between the motor-gear assembly and the power screw and integrates a slip clutch device and a flexible coupling into a common unit.