Abstract:
An 8-bit microprocessor has a program memory having a 16-bit instruction word size and a data memory having an 8-bit data size. An instruction word has a payload size for an address of up to 12 bits. The microprocessor furthermore has a central processing unit coupled with the program memory and the data memory, a bank select register configured to select one of up to 64 memory banks, and an indirect addressing register operable to address up to 16KB of data memory. The CPU is configured to execute a first move instruction having two instruction words and being configured to only access the lower 4KB of the data memory and a second move instruction having three instruction words and configured to access the entire data memory.
Abstract:
A microcontroller measures capacitance of capacitive sensors having guard rings associated therewith. A guard ring is provided around each capacitive sensor plate and is charged to substantially the same voltage as a voltage on the associated capacitive sensor plate. The guard ring reduces parasitic capacitances of the capacitive sensor plate caused by differences in voltage potentials between the capacitive sensor plate, and adjacent circuit conductors, ground planes and power planes. An analog output is buffered and coupled to an analog input coupled to the capacitive sensor plate, and is used to drive the guard ring voltage to substantially the same voltage as the voltage on the capacitive sensor plate.
Abstract:
An integrated circuit including a processor configured to operate off a supply voltage being applied at one of a plurality of external pins; and internal input/output circuitry configured to select between the supply voltage and at least one other supply voltage being applied at another of the plurality of external pins.
Abstract:
A microprocessor or microcontroller device may have a central processing unit (CPU), a data memory coupled with the CPU, wherein the data memory is divided into a plurality of memory banks, wherein a bank select register determines which memory bank is currently coupled with the CPU. Furthermore, a first and second set of special function registers are provided, wherein upon occurrence of a context switch either the first or the second set of special function register are selected as active context registers for the CPU and the respective other set of special function registers are selected as inactive context registers, wherein at least some of the registers of the active context registers are memory mapped to more than two memory banks of the data memory and wherein all registers of the inactive context registers are memory mapped to at least one memory location within the data memory.
Abstract:
A guard ring is provided around each capacitive sensor plate and charged to substantially the same voltage as a voltage on the capacitive sensor plate. The guard ring reduces parasitic capacitances of the capacitive sensor plate caused by differences in voltage potentials between the capacitive sensor plate, and adjacent circuit conductors, ground planes and power planes. Two digital outputs and associated voltage divider resistors are used to drive the guard ring voltage to substantially the same voltage as the voltage on the capacitive sensor plate.
Abstract:
A programmable system arbiter for granting access to a system bus among a plurality of arbiter clients and a central processing unit is disclosed. The programmable system arbiter may include one or more interrupt priority registers, each of the one or more interrupt priority registers associated with an interrupt type; and system arbitration logic operable to arbitrate access to the system bus among the plurality of arbiter clients and the CPU based at least on an analysis of a programmed priority order, the programmed priority order comprising a priority order for each of the plurality of arbiter clients, each of a plurality of operating modes of the central processing unit, and each of the one or more interrupt types.
Abstract:
An 8-bit microprocessor has a program memory having a 16-bit instruction word size and a data memory having an 8-bit data size. An instruction word has a payload size for an address of up to 12 bits. The microprocessor furthermore has a central processing unit coupled with the program memory and the data memory, a bank select register configured to select one of up to 64 memory banks, and an indirect addressing register operable to address up to 16 KB of data memory. The CPU is configured to execute a first move instruction having two instruction words and being configured to only access the lower 4 KB of the data memory and a second move instruction having three instruction words and configured to access the entire data memory.
Abstract:
An integrated circuit device includes a first processing core operable to process a first instruction set, a second processing core operable to process a second instruction set different from the first instruction set, a plurality of peripheral devices, a memory and a switching circuit configured to couple the memory and the plurality of peripheral devices with either the first processing core or the second processing core depending on a configuration setting of the integrated circuit device.
Abstract:
An embedded system and method for controlling such are disclosed. The embedded system includes a direct memory controller comprising a plurality of channels, wherein a plurality of channel arbitration schemes are programmable, wherein the DMA controller is programmable to split a block data transfer on a specified channel into a plurality of separate data transfers, wherein a data transfer on a specified channel can be interrupted between separate data transfers of the data transfer.
Abstract:
A microprocessor or microcontroller device may have a central processing unit (CPU), a data memory coupled with the CPU, wherein the data memory is divided into a plurality of memory banks, wherein a bank select register determines which memory bank is currently coupled with the CPU. Furthermore, a first and second set of special function registers are provided, wherein upon occurrence of a context switch either the first or the second set of special function register are selected as active context registers for the CPU and the respective other set of special function registers are selected as inactive context registers, wherein at least some of the registers of the active context registers are memory mapped to more than two memory banks of the data memory and wherein all registers of the inactive context registers are memory mapped to at least one memory location within the data memory.