Abstract:
Systems, methods, and apparatus related to memory devices. In one approach, a vertical three-dimensional cross-point memory device uses digit line decoders that include, on the digit line side of memory cells, a current limiter and sensing circuit configured to control program current in either of positive or negative program polarities, as selected by a controller. Two current limiters are each used on the digit line side of each memory cell. A negative polarity current limiter is used for pull-up, and a positive polarity current limiter is used for pull-down. A negative polarity sensing circuit is used between the respective digit line decoder and a positive supply voltage. A positive polarity sensing circuit is used between the respective digit line decoder and a negative supply voltage. The current limiter and sensing circuit pair of the same polarity is coupled to each digit line decoder based on the selected program polarity.
Abstract:
Embodiments disclosed herein may relate to forming a storage component comprising a phase change material and a shunt relative to amorphous portions of the phase change material.
Abstract:
Embodiments disclosed herein may relate to forming a storage component comprising a phase change material and a shunt relative to amorphous portions of the phase change material.
Abstract:
Systems, methods, and apparatus related to memory devices. In one approach, a vertical three-dimensional cross-point memory device uses digit line decoders that include, on the digit line side of memory cells, a current limiter and sensing circuit configured to control program current in either of positive or negative program polarities, as selected by a controller. Two current limiters are each used on the digit line side of each memory cell. A negative polarity current limiter is used for pull-up, and a positive polarity current limiter is used for pull-down. A negative polarity sensing circuit is used between the respective digit line decoder and a positive supply voltage. A positive polarity sensing circuit is used between the respective digit line decoder and a negative supply voltage. The current limiter and sensing circuit pair of the same polarity is coupled to each digit line decoder based on the selected program polarity.
Abstract:
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.
Abstract:
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.
Abstract:
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.
Abstract:
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.