Abstract:
A method of forming a planar surface for a semiconductor device structure. The method comprises forming a particle film comprising a plurality of discrete particles on a non-planar surface of a semiconductor device structure. The semiconductor device structure is subjected to at least one chemical-mechanical polishing process after forming the particle film on the non-planar surface of the semiconductor device structure. Methods of forming a semiconductor device structure are also described.
Abstract:
A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
Abstract:
A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
Abstract:
Semiconductor device interconnect structures comprising nitrided barriers are disclosed herein. In one embodiment, an interconnect structure includes a conductive material at least partially filling an opening in a semiconductor substrate, and a nitrided barrier between the conductive material and a sidewall in the opening. The nitrided barrier comprises a nitride material and a barrier material, such as tantalum, between the nitride material and the sidewall of the substrate.
Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
Abstract:
Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
Abstract:
Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
Abstract:
A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.