Abstract:
Apparatuses and methods for providing voltages to conductive lines between which clock signal lines are disposed are disclosed. Voltages provided to the conductive lines may provide voltage conditions for clock signals on the clock signal lines that are relatively the same for at least some of the clock edges of the clock signals. Having the same voltage conditions may mitigate variations in timing/phase between the clock signals due to different voltage influences when a clock signal transitions from a low clock level to a high clock level.
Abstract:
Apparatuses and methods for providing clocks in a semiconductor device are disclosed. An example apparatus includes a clock generating circuit configured to generate an output clock signal based on one of rising and trailing edges of first, second, third and fourth clock signals in a first mode, phases of the first, second, third and fourth clock signals being shifted to each other. The clock generating circuit is further configured to generate the output clock signal based on both of rising and trailing edges of fifth and sixth clock signals in a second mode.
Abstract:
Disclosed herein is a device includes: a level conversion circuit coupled to first and third power supply lines, receiving a first signal and an inverted signal of the first signal each having an amplitude between first and second potentials, and outputting a second signal having an amplitude between first and third potentials; a delay circuit coupled to the first and second power supply lines, and outputting a third signal delayed from the first signal; and an output circuit including first and second transistors coupled in series between the first and third power supply lines, the first transistor having a control electrode supplied with the second signal, and the second transistor having a control electrode supplied with the third signal.
Abstract:
An impedance adjustment circuit includes a counter circuit outputting a count value thereof as a plurality of first impedance adjustment signals, a mode selection circuit setting a second impedance adjustment signal to be in an active/inactive state irrespective of the count value, and a level fixing circuit fixing a third impedance adjustment signal to be in an active state. A pre-stage circuit generates a plurality of first output control signals, a second output control signal, and a third output control signal in response to the first impedance adjustment signals, the second impedance adjustment signal, and the third impedance adjustment signal, respectively, and a data signal. An output circuit includes a plurality of first transistors, a second transistor, and a third transistor connected in parallel to each other between an output terminal and a first power supply wiring. Control terminals of the first transistors, the second transistor, and the third transistor receive the first output control signals, the second output control signal, and the third output control signal, respectively.