Abstract:
A force-controlled ultrasound imaging device uses a linear drive system to maintain a suitable contact force with a subject. A combination of hardware and software limits on travel for the linear drive system provide intuitive user feedback while helping to ensure that the linear drive system remains active throughout the scan, while responding appropriately to initiation and termination of scans.
Abstract:
A photonic aerosol particle sensor includes a plurality of photonic waveguide resonators each having a photonic waveguide disposed along a separate waveguide resonator path and each photonic waveguide having a lateral waveguide width different than the waveguide width of other photonic waveguide resonators in the plurality. All waveguides in the plurality of photonic waveguide resonators have a common vertical thickness and are formed of a common photonic waveguide material. An optical input connection couples light into the waveguide resonators. A particle input conveys aerosol particles toward the waveguide resonators and an aerosol particle output conveys aerosol particles away from the waveguide resonators. At least one optical output connection is optically connected to accept light out of the plurality of photonic waveguide resonators to provide a signal indicative of at least one characteristic of the aerosol particles to be analyzed.
Abstract:
Devices, systems, and methods of the present disclosure are directed to accurate and non-invasive assessments of anatomic vessels (e.g., the internal jugular vein (IJV)) of vertebrates. For example, a piezoelectric crystal may generate a signal and receive a pulse echo of the signal along an axis extending through the piezoelectric crystal and an anatomic vessel. A force sensor disposed relative to the piezoelectric crystal may measure a force exerted (e.g., along skin of the vertebrate) on the anatomic vessel along the axis. The pulse echo received by the piezoelectric crystal and the force measured by the force sensor may, in combination, non-invasively and accurately determine a force response of the anatomic vessel. In turn, the force response may be probative of any one or more of a variety of different characteristics of the anatomic vessel including, for example, location of the anatomic vessel and pressure of the anatomic vessel.
Abstract:
An ultrasound scanning system includes a graphical user interface that provides visually intuitive feedback to a user to assist the user in properly aligning an ultrasound scanner to a desired acquisition state. In addition to providing pose information, the feedback may direct the user as to a target contact force applied by the ultrasound scanner to a surface undergoing a scan.
Abstract:
Systems and methods are provided for imaging of soft and hard tissues with ultrasound. Such systems and methods can provide for non-contact and quantitative ultrasound images of bone and soft tissue. A method for imaging a biological body segment of soft and hard tissues includes setting geometry and material properties according to a model of the biological body segment to thereby generate a simulated time series data set. The method further includes collecting reflective and transmissive time series data of the biological body segment to thereby form an experimental time series data set and minimizing a difference between the simulated time series data set and the experimental time series data set, thereby imaging the biological body segment. Regularizing travel-time and/or using full waveform tomographic techniques with level set methods enable recovery of cortical bone geometry.
Abstract:
A mechanical vibration source for a shear wave elastography system has a contact surface shaped to provide a point source of mechanical energy when striking a target surface of a medium. This point source usefully mitigates high frequency components and other artifacts in an induced shear wave. Other techniques may be used in combination with this mechanical energy source to improve shear wave elastography and facilitate miniaturization for deployment, e.g., within a handheld imaging device.
Abstract:
Devices, systems, and methods of the present disclosure are directed to accurate and non-invasive assessments of anatomic vessels (e.g., the internal jugular vein (IJV)) of vertebrates. For example, a piezoelectric crystal may generate a signal and receive a pulse echo of the signal along an axis extending through the piezoelectric crystal and an anatomic vessel. A force sensor disposed relative to the piezoelectric crystal may measure a force exerted (e.g., along skin of the vertebrate) on the anatomic vessel along the axis. The pulse echo received by the piezoelectric crystal and the force measured by the force sensor may, in combination, non-invasively and accurately determine a force response of the anatomic vessel. In turn, the force response may be probative of any one or more of a variety of different characteristics of the anatomic vessel including, for example, location of the anatomic vessel and pressure of the anatomic vessel.
Abstract:
A system for generating an image of a region of interest (ROI) of a target object, the system including a camera, a target stage configured to receive the target object, the target stage configured to provide a translational movement and a rotational movement of the target object, and a controller. The controller is configured to control the camera and target stage to iteratively shift the target along scan trajectories of sample locations to capture images of each of a plurality of concentric rings and sub-rings of a predefined radial pitch over the ROI, the sample locations represented by polar coordinates defining sectors of each of the sub-rings. The controller is further configured to extract super resolution (SR) pixels from the images to reconstruct an SR image of each of the rings in the polar coordinates, and project the SR images into Cartesian coordinate images.
Abstract:
A force-controlled ultrasound imaging device uses a linear drive system to maintain a suitable contact force with a subject. A combination of hardware and software limits on travel for the linear drive system provide intuitive user feedback while helping to ensure that the linear drive system remains active throughout the scan, while responding appropriately to initiation and termination of scans.
Abstract:
System for measuring thickness and lateral position of a transparent object. The system includes a camera having a sensor for receiving light, the camera including an objective lens for focusing on an object plane and having an optical axis and a field of view. A source of light is provided to illuminate a surface having variations in reflected light intensity. The surface is spaced apart from the objective lens and disposed at an angle with respect to the optical axis of the objective lens. A transparent object disposed fully or partially between the objective lens and the surface will shift the position of the object plane, the shift in object plane being proportional to the thickness of the object, and the transparent object, when partially inserted between the objective lens and the surface, will focus a fraction of the light on a lower plane, this fraction of light being proportional to the fraction of the lens field of view occupied by the transparent object that is related to lateral position.