Abstract:
An electrical connector for electrical connection to conductive members of a ceramic chip carrier comprises first and second dielectric frame members each of which has opposed side members in which electrical terminal posts are secured at spaced intervals with top sections extending above upper surfaces of the side members and bottom sections extending below bottom surfaces of the side members. Rail members extend between respective side members of each of the frame members so that when the frame members are nested together the rail members of one of the frame members are disposed in engagement with the rail members of the other of the frame members. Latching members on each of the frame members latch the frame members together thereby forming a chip carrier-receiving area so that the top sections of the terminal posts can be electrically connected to respective conductive members when the ceramic chip carrier is positioned within the chip carrier-receiving area.
Abstract:
An electrical connector assembly (10) of very low profile for interconnecting a daughter card to a mother board, mountable onto mother board (150) and having a housing (12) and an array of contacts (40) having elongate pin sections (42) insertable into through-holes (156) of mother board (150). Short pin sections (48) extend above the planar body section (14) of the housing and through apertures (122) of termini (120) of circuit traces (102) of a flexible circuit element (100) and soldered to said termini. Potting material embeds, seals and insulates the solder joints and short pin sections securing the flexible circuit element to the housing. Side portions (106) of the flexible circuit element extend upwardly from the housing to regions (110) of exposed trace portions (116) to be soldered to circuit traces of a daughter card (170).
Abstract:
A pair of small diameter lead assemblies as a complete electrically and environmentally sealed matable high voltage connection suitable for use under rugged environmental conditions, have a plug element and a receptacle conditions, have a plug element and a receptacle element physically matable therewith. The lead assemblies can each include annular retention clips therearound enabling insertion into and retention within passageways of matable housings of a multi-terminal hybrid connector assembly, to enable certain existing connectors to be converted into use as high voltage connector assemblies for rugged conditions without housing modification. The plug has a small diameter dielectric annular shell with a socket terminal in an internal passageway; and the receptacle has a small diameter dielectric annular shell having a pin terminal in its internal passageway which is matable with the socket terminal. A forward receptacle portion of the receptacle surrounding the pin contact section snugly receives thereinto a forward reduced dimension plug portion of the plug. Spaced apart O-rings disposed along and tightly around the plug portion are compressed by the receptacle portion and assuredly seal the annular space therebetween, preventing generation of voltage discharge and minimizing corona formation thereat. The rearward passageway portions surrounding the existing conductor wires are potted to prevent voltage discharge and minimize corona formation thereat.
Abstract:
A connector (10) having one or more arrays of elongate cantilever beam arms (22) of contacts (20) can have contact sections (26) on free ends (24) thereof soldered to respective traces (94) of a circuit element (90), by securing a lead frame (50) to free ends (24) which includes a corresponding plurality of fingers (56) extending from a carrier strip (52). On the finger ends (58) are affixed preforms (80,82) of solder; on the carrier strip (52) is defined a thin magnetic layer, transforming the brass carrier strip into a Curie point heater. When the carrier strip is subjected to RF current, it generates thermal energy which melts the solder preforms to join the fingers first to the contact sections (26) of the connector contacts (20), and in a remote location later subjected to RF current to reflow solder preform (82) to join contact sections (26) to traces (94).
Abstract:
An electrical component has a plurality of paired contacts with spaced inner contact sections bridged by a fuse element. The paired contacts have outer contact sections enabling mounting to a circuit panel to complete circuit paths thereon. The component can be used as a shunt for programming the circuit panel by programming the component prior to in-service use of the panel, by the method of deliberately opening the respective fuse element between one or more selected pairs of contacts by an electrical programming current thereon, leaving other fuse elements intact for in-service path connection of their respective circuit paths. The component can be surface mountable and can have DIP configuration.
Abstract:
An electrical switch comprises an electrical contact assembly which includes a dielectric frame in which a series of aligned stationary contact members are disposed. Electrical contact sections of the stationary contact members are exposed in recesses in a top surface of the dielectric frame. A movable electrical contact member is pivotally mounted on one of the contact sections in each of the recesses to electrically connect the stationary contact sections in one position and to disconnect the contact sections in another position. A housing is latchably secured onto the dielectric frame and has linearly-movable actuating members mounted therein in operative association with respective movable contact members. Each of the linearly-movable actuating members comprises a slide member in which a spring is disposed. The slide member is movable to one position in the housing so that the spring moves the movable contact member to the one position electrically connecting the stationary contact sections and the spring and the housing maintain the slide member in this one position. The slide member is movable to another position in the housing so that the spring moves the movable contact member to another position disconnecting the stationary contact sections and the spring and the housing maintain the slide member in this other position.
Abstract:
A single in-line package switch comprises a dielectric frame along which movable electrical contact members are disposed. An electrical bus contact is mounted on support members of the dielectric frame, each of the movable contact members extending between a pair of the support members. Each of the movable contact members has a sinusoidal contact section, one end of the contact section being secured in the dielectric frame as a terminal section while the free end of the contact section is disposed within a recess of an actuating member pivotally mounted on the pair of support members between which the contact section is disposed. A housing member is secured onto the dielectric frame with actuating sections of the actuating members being operable from one surface of the housing member to one position thereby moving the sinusoidal contact sections in electrical engagement with the bus contact and to another position thereby moving the sinusoidal contact sections free of the bus contact, the spring forces of the sinusoidal contact sections maintaining the contact sections and the actuating members in the one or the other position.
Abstract:
A sealed electrical contact assembly comprises a dielectric frame in which a plurality of aligned stationary electrical contact members are secured as opposing sets of contact members and movable electrical contact members interconnect each set of stationary contact members. One of the opposing sets of stationary contact members and the movable contact members have mateable pivot areas at which the movable contact members are mounted so that the movable contact members can be moved to a position electrically connecting the opposing sets of stationary contact members. A membrane is sealingly secured onto the frame covering each set of stationary and movable contact members associated therewith.
Abstract:
A lead frame assembly comprises a stamped and formed lead frame having spaced pairs of electrical terminals and other contact sections. Severable sections initially interconnect potential electrical circuit sections of the lead frame separating the lead frame into separate metal members defining discrete electrical circuits if severed. A dielectric covering is molded over the lead frame exposing the pairs of terminals and other contact sections for termination or electrical engagement. Openings are formed in the housing exposing the severable sections of the lead frame for severing, to be selectively severed creating separate electrical circuit sections, or to be retained unsevered, as desired. After the molding of the covering over the lead frame, the article thus fabricated can be customized by selective severing and connecting of components as desired.
Abstract:
A motor brush assembly comprises a stamped and formed lead frame including electrical terminals at spaced locations and a dielectric housing member secured onto the lead frame with the electrical terminals being exposed and accessible for electrical termination to electrical power wires and lead wires of capacitors and inductors. Cavities are located in the housing member in which the inductors are disposed. Metal brush holders are positioned in brush holder locations on the housing member and lugs thereof are electrically stapled onto the lead frame. Openings are located in the housing member exposing severable sections of the lead frame separating the lead frame into separate brush circuits. If inductors are to be disposed in the circuit path between the terminated power leads and the brush holder locations, the respective severable sections are also severed which interconnect the lead frame between the associated pairs of terminals corresponding to each inductor. A ground terminal extends outwardly from the housing member.