摘要:
The foregoing objects are achieved as is now described. A method and system for testing an integrated circuit are provided. A test substrate is provided which is manufactured by the same particular production technology for which the complex integrated circuit is designed. A pattern generator for generating test data and a result checker for comparing output data are embedded on the test substrate. Isolated portions of circuitry of the integrated circuit are selectively embedded onto the test substrate. The isolated portions of circuitry are subjected to testing by applying test data from the pattern generator to the isolated portions of circuitry. Errors in the isolated portions of circuitry are detected with the result checker by comparing data output from the isolated portions of circuitry with predetermined expected data, such that the integrated circuit is tested by susets, independently of testing the integrated circuit in its entirety.
摘要:
A method an apparatus for interface failure survivability using error correction provides operation of an interface when a number of bits of the interface less than or equal to available error correction depth are present. Initialization tests are used to determine whether the interface errors due to failed interconnects or circuits can be corrected, or whether the interface must be disabled. Subsequent alignment at initialization or during operation idle periods may be disabled for any failed bit paths. The failed bit path indications are determined and maintained in hardware, and used to bypass subsequent calibrations that could otherwise corrupt the interface. A fault indication specifying total failure may be generated and used to shut down the interface and/or connected subsystem in response to an uncorrectable condition and request immediate repair. A second fault indication specifying correctable failure may be generated and used to indicate a need for eventual repair.
摘要:
Monitoring is performed to detect a hang condition. A timer is set to detect a hang based on a core hang limit. If a thread hangs for the duration of the core hang limit, then a core hang is detected. If the thread is performing an external memory transaction, then the timer is increased to a longer memory hang limit. If the thread is waiting for a shared resource, then the timer may be increased to the longer memory hang limit if another thread or, more particularly, the thread blocking the resource has a pending memory transaction. Responsive to detecting a hang condition, instructions dispatched to the plurality of execution units may be flushed, or the processor may be reset and restored to a previously known good, checkpointed architected state.
摘要:
Monitoring is performed to detect a hang condition. A timer is set to detect a hang based on a core hang limit. If a thread hangs for the duration of the core hang limit, then a core hang is detected. If the thread is performing an external memory transaction, then the timer is increased to a longer memory hang limit. If the thread is waiting for a shared resource, then the timer may be increased to the longer memory hang limit if another thread or, more particularly, the thread blocking the resource has a pending memory transaction. Responsive to detecting a hang condition, instructions dispatched to the plurality of execution units may be flushed, or the processor may be reset and restored to a previously known good, checkpointed architected state.
摘要:
The system and method of the present invention is embodied in a multi-state on-chip logic analyzer that is preferably integrated into a VLSI circuit. In general, the logic analyzer is preferably coupled to a multilevel trace array for storing event trace data generated by the logic analyzer. Input and output logic coupled to both the trace array and the logic analyzer allows reading or writing from or to the trace array, and programming of trigger and condition criteria for transitioning states within the logic analyzer. The logic analyzer has the capability match one or more programmable trigger events to satisfy one or more programmable conditions. Further, the logic analyzer preferably has the capability to initialize programmable conditions in desired states, and to store event trace data in an on-chip array for trace data reconstruction and analysis. Trace array input and output logic allows reading or writing from or to the trace array, and programming of trigger and condition criteria for transitioning states within the logic analyzer. Further, the trace array input and output logic is preferably accessible at both the wafer and component stage to allow for testing and debugging of the VLSI circuitry.
摘要:
Processor time accounting is enhanced by per-thread internal resource usage counter circuits that account for usage of processor core resources to the threads that use them. Relative resource use can be determined by detecting events such as instruction dispatches for multiple threads active within the processor, which may include idle threads that are still occupying processor resources. The values of the resource usage counters are used periodically to determine relative usage of the processor core by the multiple threads. If all of the events are for a single thread during a given period, the processor time is allocated to the single thread. If no events occur in the given period, then the processor time can be equally allocated among threads. If multiple threads are generating events, a fractional resource usage can be determined for each thread and the counters may be updated in accordance with their fractional usage.
摘要:
Processor time accounting is enhanced by per-thread internal resource usage counter circuits that account for usage of processor core resources to the threads that use them. Relative resource use can be determined by detecting events such as instruction dispatches for multiple threads active within the processor, which may include idle threads that are still occupying processor resources. The values of the resource usage counters are used periodically to determine relative usage of the processor core by the multiple threads. If all of the events are for a single thread during a given period, the processor time is allocated to the single thread. If no events occur in the given period, then the processor time can be equally allocated among threads. If multiple threads are generating events, a fractional resource usage can be determined for each thread and the counters may be updated in accordance with their fractional usage.
摘要:
Processor time accounting is enhanced by per-thread internal resource usage counter circuits that account for usage of processor core resources to the threads that use them. Relative resource use can be determined by detecting events such as instruction dispatches for multiple threads active within the processor, which may include idle threads that are still occupying processor resources. The values of the resource usage counters are used periodically to determine relative usage of the processor core by the multiple threads. If all of the events are for a single thread during a given period, the processor time is allocated to the single thread. If no events occur in the given period, then the processor time can be equally allocated among threads. If multiple threads are generating events, a fractional resource usage can be determined for each thread and the counters may be updated in accordance with their fractional usage.
摘要:
A trace array for recording states of signals includes N-storage locations for k trace signals. In the write mode, an address generator combines the outputs of an event signal counter and a cycle clock counter to generate trace array addresses. A start code is written each time an event signal occurs and event addresses are saved. Recording is stopped by a stop signal and the stop address is saved. A compression code and time stamp code are written when no state changes occur in any trace signals at the cycle clock times to compress recorded trace signal data. An output processor reads out stored states of the trace signals and uses the start codes, event addresses, stop address, compression code and time stamp to reconstruct the original trace signal sequences for analysis.
摘要:
Processor time accounting is enhanced by per-thread internal resource usage counter circuits that account for usage of processor core resources to the threads that use them. Relative resource use can be determined by detecting events such as instruction dispatches for multiple threads active within the processor, which may include idle threads that are still occupying processor resources. The values of the resource usage counters are used periodically to determine relative usage of the processor core by the multiple threads. If all of the events are for a single thread during a given period, the processor time is allocated to the single thread. If no events occur in the given period, then the processor time can be equally allocated among threads. If multiple threads are generating events, a fractional resource usage can be determined for each thread and the counters may be updated in accordance with their fractional usage.