Abstract:
An embodiment of an interconnect structure for an integrated circuit may include a first conductor coupled to circuitry, a second conductor, a dielectric between the first and second conductors, and a conductive underpass under and coupled to the first and second conductors and passing under the dielectric or a conductive overpass over and coupled to the first and second conductors and passing over the dielectric. The second conductor would be floating but for its coupling to the conductive underpass or the conductive overpass. In other embodiments, another dielectric might be included that would electrically isolate the second conductor but for its coupling to the conductive underpass or the conductive overpass.
Abstract:
Systems and methods are disclosed for a stochastic model of mask process variability of a photolithography process, such as for semiconductor manufacturing. In one embodiment, a stochastic error model may be based on a probability distribution of mask process error. The stochastic error model may generate a plurality of mask layouts having stochastic errors, such as random and non-uniform variations of contacts. In other embodiments, the stochastic model may be applied to critical dimension uniformity (CDU) optimization or design rule (DR) sophistication.
Abstract:
Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
Abstract:
Integrated circuits, as well as methods of their formation, include a first conductive structure at a first level of the integrated circuit, a second conductive structure at a second level of the integrated circuit, a first conductor at a third level of the integrated circuit between the first level and the second level, a second conductor at the third level and parallel to the first conductor, and a third conductor at the third level and parallel to the first conductor and to the second conductor. The first conductive structure is in physical and electrical contact with the first conductor and the second conductor. The second conductive structure is in physical and electrical contact with the second conductor and the third conductor.
Abstract:
Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
Abstract:
An embodiment of an interconnect structure for an integrated circuit may include a first conductor coupled to circuitry, a second conductor, a dielectric between the first and second conductors, and a conductive underpass under and coupled to the first and second conductors and passing under the dielectric or a conductive overpass over and coupled to the first and second conductors and passing over the dielectric. The second conductor would be floating but for its coupling to the conductive underpass or the conductive overpass. In other embodiments, another dielectric might be included that would electrically isolate the second conductor but for its coupling to the conductive underpass or the conductive overpass.
Abstract:
Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.