Abstract:
Integrated circuits include a first conductive structure at a first level of the integrated circuit, a second conductive structure at a second level of the integrated circuit, a first conductor at a third level of the integrated circuit between the first level and the second level, a second conductor at the third level and parallel to the first conductor, and a third conductor at the third level and parallel to the first conductor and to the second conductor. The first conductive structure is in physical and electrical contact with the first conductor and the second conductor. The second conductive structure is in physical and electrical contact with the second conductor and the third conductor.
Abstract:
An embodiment of an interconnect structure for an integrated circuit may include a first conductor coupled to circuitry, a second conductor, a dielectric between the first and second conductors, and a conductive underpass under and coupled to the first and second conductors and passing under the dielectric or a conductive overpass over and coupled to the first and second conductors and passing over the dielectric. The second conductor would be floating but for its coupling to the conductive underpass or the conductive overpass. In other embodiments, another dielectric might be included that would electrically isolate the second conductor but for its coupling to the conductive underpass or the conductive overpass.
Abstract:
A method of forming a pattern on a substrate includes forming spaced first features derived from a first lithographic patterning step. Sidewall spacers are formed on opposing sides of the first features. After forming the sidewall spacers, spaced second features derived from a second lithographic patterning step are formed. At least some of individual of the second features are laterally between and laterally spaced from immediately adjacent of the first features in at least one straight-line vertical cross-section that passes through the first and second features. After the second lithographic patterning step, all of only some of the sidewall spacers in said at least one cross-section is removed.
Abstract:
Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
Abstract:
A method including forming a line pattern in a substrate includes using a plurality of longitudinally spaced projecting features formed along respective guide lines as a template in forming a plurality of directed self-assembled (DSA) lines that individually comprise at least one of (a): the spaced projecting features and DSA material longitudinally there-between, and (b): are laterally between and laterally spaced from immediately adjacent of the guide lines. Substrate material elevationally inward of and laterally between the DSA lines may be processed using the DSA lines as a mask.
Abstract:
Some embodiments include methods of forming a pattern. First lines are formed over a first material, and second lines are formed over the first lines. The first and second lines form a crosshatch pattern. The first openings are extended through the first material. Portions of the first lines that are not covered by the second lines are removed to pattern the first lines into segments. The second lines are removed to uncover the segments. Masking material is formed between the segments. The segments are removed to form second openings that extend through the masking material to the first material. The second openings are extended through the first material. The masking material is removed to leave a patterned mask comprising the first material having the first and second openings therein. In some embodiments, spacers may be formed along the first and second lines to narrow the openings in the crosshatch pattern.
Abstract:
A method of forming a pattern on a substrate includes forming spaced first features derived from a first lithographic patterning step. Sidewall spacers are formed on opposing sides of the first features. After forming the sidewall spacers, spaced second features derived from a second lithographic patterning step are formed. At least some of individual of the second features are laterally between and laterally spaced from immediately adjacent of the first features in at least one straight-line vertical cross-section that passes through the first and second features. After the second lithographic patterning step, all of only some of the sidewall spacers in said at least one cross-section is removed.
Abstract:
A method of forming a pattern on a substrate includes forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate. Longitudinally elongated second lines and second sidewall spacers are formed longitudinally along opposite sides of the second lines. The second lines and the second sidewall spacers cross elevationally over the first lines and the first sidewall spacers. The second sidewall spacers are removed from crossing over the first lines. The first and second lines are removed in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate. Other methods are disclosed.
Abstract:
Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
Abstract:
Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.