Abstract:
An apparatus, suitable for coupling a pads of integrated circuits on wafer to the pogo pins of a pogo tower in a test system without the need of a probe card, includes a body having a first surface and a second surface, the body having a substantially circular central portion, and a plurality of bendable arms extending outwardly from the central portion, each bendable arm having a connector tab disposed at the distal end thereof; a first plurality of contact terminals disposed on the second surface of the central portion of the body, the first plurality of contact terminals arranged in pattern to match the layout of pads on a wafer to be contacted; at least one contact terminal disposed on the first surface of the plurality of connector tabs; and a plurality of electrically conductive pathways disposed in the body such that each of the first plurality of contact terminals is electrically connected to a corresponding one of the contact terminals on the first surface of the connector tabs.
Abstract:
Methods and apparatus for producing fully tested unsingulated integrated circuits without probe scrub damage to bond pads includes forming a wafer/wafer translator pair removably attached to each other wherein the wafer translator includes contact structures formed from a soft crushable electrically conductive material and these contact structures are brought into contact with the bond pads in the presence of an inert gas; and subsequently a vacuum is drawn between the wafer and the wafer translator. In one aspect of the present invention, the unsingulated integrated circuits are exercised by a plurality of test systems wherein the bond pads are never physically touched by the test system and electrical access to the wafer is only provided through the inquiry-side of the wafer translator. In a further aspect of the present invention, known good die having bond pads without probe scrub marks are provided for incorporation into products.
Abstract:
Assemblies include a substrate, such as a printed circuit board, with a first array of contact pads disposed thereon; a guide ring structure disposed on the substrate and at least partially surrounding the first array of contact pads; a translator socket disposed on the first array of contact pads, the translator socket adapted to receive the tester side of a translated wafer; a thermally conductive, conformal, heat spreading cushion adapted to be disposed over the backside of a wafer; a cover plate adapted to fit over the first array of contact pads, align with the guide ring structure, contain within it the various components disposed over the first array of contact pads, and removably attach to the substrate; and a bolster plate adapted to removably attach to a second side of the substrate. In a further aspect a translated wafer is disposed over the translator socket such that the tester side of the translator is in contact with the translator socket; and the heat spreading cushion is disposed over the backside of the translated wafer. In a still further aspect, the substrate includes signal communication means, such as but not limited to, an edge connector adapted to couple to various controller circuits, which are typically disposed on a printed circuit board.
Abstract:
A translated wafer stand-in tester, being a hybrid apparatus capable of emulating the form factor and some or all behaviors of a translated wafer under test, which is operable to store, quantify, encode and convey, either directly or remotely, data from a testing system, including but not limited to pad pressure, electrical contact and temperature. The translated wafer stand-in tester may include several stacked and attached layers, at least one internal layer including electronic components operable to interact with a test system.
Abstract:
Assemblies include a substrate, such as a printed circuit board, with a first array of contact pads disposed thereon; a guide ring structure disposed on the substrate and at least partially surrounding the first array of contact pads; a translator socket disposed on the first array of contact pads, the translator socket adapted to receive the tester side of a translated wafer; a thermally conductive, conformal, heat spreading cushion adapted to be disposed over the backside of a wafer; a cover plate adapted to fit over the first array of contact pads, align with the guide ring structure, contain within it the various components disposed over the first array of contact pads, and removably attach to the substrate; and a bolster plate adapted to removably attach to a second side of the substrate. In a further aspect a translated wafer is disposed over the translator socket such that the tester side of the translator is in contact with the translator socket; and the heat spreading cushion is disposed over the backside of the translated wafer. In a still further aspect, the substrate includes signal communication means, such as but not limited to, an edge connector adapted to couple to various controller circuits, which are typically disposed on a printed circuit board.
Abstract:
Concurrent electrical access to the pads of integrated circuits on a wafer is provided by an edge-extended wafer translator that carries signals from one or more pads on one or more integrated circuits to contact terminals on the inquiry-side of the edge-extended wafer translator, including portions of the inquiry-side that are superjacent the wafer when the wafer and the edge-extended wafer translator are in a removably attached state, and portions of the inquiry side that reside outside a region defined by the intersection of the wafer and the edge-extended wafer translator. In a further aspect of the present invention, access to the pads of integrated circuits on a wafer is additionally provided by contact terminals in a second inquiry area located on the wafer-side of the edge-extended wafer translator in a region thereof bounded by its outer circumference and the circumference of the attached wafer.
Abstract:
A low-cost alignment system suitable for aligning a wafer to a test fixture includes a bundle of optical fibers wherein at least one fiber serves to deliver illumination to the alignment target from an end thereof, and a plurality of receiver fibers, each having ends with a known spatial relationship to the end of the illuminator fiber. The ends of the fiber bundle have a known spatial relationship to the fixture. In some embodiments, the fiber bundle is disposed within the fixture such that there is an unobscured optical path between the wafer and the receiving and illuminating ends of the fibers. In some embodiments, the fiber bundle is coupled to a light source and a light sensor mounted on the fixture. In some embodiments the alignment target is one or more bonding pads disposed on a wafer.
Abstract:
Access to integrated circuits of a wafer for concurrently performing two or more types of testing, is provided by bringing a wafer and an edge-extended wafer translator into an attached state. The edge-extended wafer translator having wafer-side contact terminals and inquiry-side contact terminals disposed thereon, a first set of wafer-side contact terminals being electrically coupled to a first set of inquiry-side contact terminals, and a second set of wafer-side contact terminals being electrically coupled to a second set of inquiry-side contact terminals. The edge-extended wafer translator having a central portion generally coextensive with the attached wafer, and an edge-extended portion extending beyond the boundary generally defined by the outer circumferential edge of the wafer. A first set of pads of at least one integrated circuit is electrically coupled to the first set of wafer-side contact terminals, and a second set of pads of the integrated circuit is electrically coupled to the second set of wafer-side contact terminals. The edge-extended wafer translator may be shaped such that its edge-extended portion is not coplanar with the central portion thereof.
Abstract:
A component for use in manufacturing circuit boards, such as printed circuit boards, or flex substrates is adapted for use with pick-and-place equipment to provide a first material overlay disposed over a second material base layer. Such a component may include a first electrically conductive material disposed over a second electrically conductive material, and a soluble tape backing disposed over and attached to the second electrically conductive material. The component may be attached to a circuit board by solder relow, after which the soluble tape backing is removed. Although typical embodiments involve electrically conductive materials, it is noted that an electrically insulating material can also be disposed over and attached to an underlying material which itself is disposed on a circuit board.
Abstract:
Methods and apparatus for testing unsingulated integrated circuits on a wafer include adapting a wafer prober for use with full-wafer-contacter disposed on the wafer. Some embodiments include placing wafer on a chuck of the prober, aligning the wafer to a full-wafer contacter incorporated in the wafer prober, removably attaching the wafer to the full wafer contacter, separating the wafer from the chuck, and making electrical contact to one or more integrated circuits of the wafer by making physical contact with a surface of the full-wafer contacter that faces away from the wafer.