Abstract:
Collecting process characterization data local to a failed integrated circuit (IC), includes providing a wafer having ICs, each IC having contact terminals, the wafer having process characterization test sites distributed across it such that at least one process characterization test site is adjacent each IC; selecting two or more ICs for simultaneous testing; for each of those ICs, coupling two or more contact terminals of the selected IC, and a corresponding two or more contact terminals of an associated test site to corresponding input terminals of a multiplexer, each multiplexer having an output terminal and a select control input terminal, the multiplexer operable to selectively provide an electrical pathway between either an IC contact terminal or a test site contact terminal and the multiplexer output terminal; coupling the output terminal of each multiplexer to a tester channel; operating the multiplexer so that its output terminal is coupled to the IC contact terminal; simultaneously testing two or more ICs; detecting a failure of at least one of the selected ICs prior to completion of testing the remaining ICs simultaneously being tested; subsequent to detecting the failure, operating the multiplexer so that its output terminal is coupled to the test site contact terminal; and collecting process characterization data prior to completion of testing the remaining ICs.
Abstract:
A conductor carrier provides, separately manufactured, conductive pathways, on a wafer level, which may be coupled to a wafer of fully fabricated integrated circuits. Such conductor carriers include an insulating body having two major surfaces with conductors disposed on each of those surfaces, and conductors disposed within the insulating body so as to provide signal continuity between various conductors on each of the two surfaces. An assembly can be formed by permanently or removably attaching the conductor carrier to the wafer. Conductor carriers may include an evacuation pathway suitable for removing air, or other gases, from between the conductor and the wafer so as to create a pressure differential that urges the conductor carrier into contact with the wafer. Conductor carriers may include a groove which is suitable for receiving a sealing ring; and may include a street map which is suitable for providing guidance to a wafer sawing operation.
Abstract:
Access to integrated circuits of a wafer for concurrently performing two or more types of testing, is provided by bringing a wafer and an edge-extended wafer translator into an attached state. The edge-extended wafer translator having wafer-side contact terminals and inquiry-side contact terminals disposed thereon, a first set of wafer-side contact terminals being electrically coupled to a first set of inquiry-side contact terminals, and a second set of wafer-side contact terminals being electrically coupled to a second set of inquiry-side contact terminals. The edge-extended wafer translator having a central portion generally coextensive with the attached wafer, and an edge-extended portion extending beyond the boundary generally defined by the outer circumferential edge of the wafer. A first set of pads of at least one integrated circuit is electrically coupled to the first set of wafer-side contact terminals, and a second set of pads of the integrated circuit is electrically coupled to the second set of wafer-side contact terminals. The edge-extended wafer translator may be shaped such that its edge-extended portion is not coplanar with the central portion thereof.
Abstract:
Apparatus and methods are provided for wafer translators having a silicon core with copper and subjacent resin layers disposed thereon. A silicon substrate is subjected to a number of printed circuit board manufacturing operations including, but not limited to, application of resin-coated copper foils; mechanical grinding of copper layers; mechanical drilling of via openings in a dielectric material; plating of copper, nickel, and gold layers; laser removal of metal; and chemical removal of metal; in order to produce a wafer translator having a silicon core. In further aspects of the present invention, alignment marks are formed and contact structures, such as stud bumps, are placed relative to a local set of alignment marks.
Abstract:
A metallization pattern for a wafer translator provides a high density layout of interdigitated contact pads, suitable for component placement, along with larger contact pads suitable for connection to external equipment terminals. In another aspect, electrically conductive material may be added to, or removed from, the high density layout of interdigitated contact pads and larger contact pads to modify, or reconfigure, the electrical pathways of the wafer translator.
Abstract:
A translated wafer stand-in tester (TWST), being a hybrid apparatus capable of emulating the form factor and some or all behaviors of a translated wafer under test, which is operable to store, quantify, encode and convey, either directly or remotely, data from a testing system, including but not limited to pad pressure, electrical contact and temperature. The TWST may include several stacked and attached layers, at least one internal layer including electronic components operable to interact with a test system.
Abstract:
Assemblies include a substrate, such as a printed circuit board, with a first array of contact pads disposed thereon; a guide ring structure disposed on the substrate and at least partially surrounding the first array of contact pads; a translator socket disposed on the first array of contact pads, the translator socket adapted to receive the tester side of a translated wafer; a thermally conductive, conformal, heat spreading cushion adapted to be disposed over the backside of a wafer; a cover plate adapted to fit over the first array of contact pads, align with the guide ring structure, contain within it the various components disposed over the first array of contact pads, and removably attach to the substrate; and a bolster plate adapted to removably attach to a second side of the substrate. In a further aspect a translated wafer is disposed over the translator socket such that the tester side of the translator is in contact with the translator socket; and the heat spreading cushion is disposed over the backside of the translated wafer. In a still further aspect, the substrate includes signal communication means, such as but not limited to, an edge connector adapted to couple to various controller circuits, which are typically disposed on a printed circuit board.
Abstract:
A low-cost alignment system suitable for aligning a wafer to a test fixture includes a bundle of optical fibers wherein at least one fiber serves to deliver illumination to the alignment target from an end thereof, and a plurality of receiver fibers, each having ends with a known spatial relationship to the end of the illuminator fiber. The ends of the fiber bundle have a known spatial relationship to the fixture. In some embodiments, the fiber bundle is disposed within the fixture such that there is an unobscured optical path between the wafer and the receiving and illuminating ends of the fibers. In some embodiments, the fiber bundle is coupled to a light source and a light sensor mounted on the fixture. In some embodiments the alignment target is one or more bonding pads disposed on a wafer.
Abstract:
Coax and twinax connector assemblies, suitable for low-cost manufacturing and high-frequency performance, include one or more slices of insulating material having a series of through-holes therein. Dimensions of the through-holes are tailored to the dimensions of the coax or twinax that are to be fitted to such connector assemblies. The slices may have dimensions that are uniform to within typical manufacturing tolerances. By combining, or stacking, the slices, the connector height can be customized to a particular application. A variety of slice thicknesses are provided so that a variety of final connector heights may be achieved. Conductive material sheets may be disposed between one or more pairs of connector slices so as to provide a common ground connection for one or more conductors, such as, for example, ground shields, disposed in the through-holes of the stacked connector slices. Additionally, right angle connectors and low-cost twinax cables are disclosed.
Abstract:
Assemblies include a substrate, such as a printed circuit board, with a first array of contact pads disposed thereon; a guide ring structure disposed on the substrate and at least partially surrounding the first array of contact pads; a translator socket disposed on the first array of contact pads, the translator socket adapted to receive the tester side of a translated wafer; a thermally conductive, conformal, heat spreading cushion adapted to be disposed over the backside of a wafer; a cover plate adapted to fit over the first array of contact pads, align with the guide ring structure, contain within it the various components disposed over the first array of contact pads, and removably attach to the substrate; and a bolster plate adapted to removably attach to a second side of the substrate. In a further aspect a translated wafer is disposed over the translator socket such that the tester side of the translator is in contact with the translator socket; and the heat spreading cushion is disposed over the backside of the translated wafer. In a still further aspect, the substrate includes signal communication means, such as but not limited to, an edge connector adapted to couple to various controller circuits, which are typically disposed on a printed circuit board.