Abstract:
In order to produce a power semiconductor for operation at high blocking voltages, there is produced on a lightly doped layer having a doping of a first charge carrier type a medium-doped layer of the same charge carrier type. A highly doped layer is produced at that side of the medium-doped layer which is remote from the lightly doped layer, of which highly doped layer a part with high doping that remains in the finished semiconductor forms a second stop layer, wherein the doping of the highly doped layer is higher than the doping of the medium-doped layer. An electrode is subsequently indiffused into the highly doped layer. The part with low doping that remains in the finished semiconductor forms the drift layer and the remaining medium-doped part forms the first stop layer.
Abstract:
In an insulated gate bipolar transistor, an improved safe operating area capability is achieved according to the invention by a two-fold base region comprising a first base region (81), which is disposed in the channel region (7) so that it encompasses the one or more source regions (6), but does not adjoin the second main surface underneath the gate oxide layer (41), and a second base region (82) is disposed in the semiconductor substrate (2) underneath the base contact area (821) so that it partially overlaps with the channel region (7) and with the first base region (81).
Abstract:
A reverse-conducting insulated gate bipolar transistor, particularly a bi-mode insulated gate transistor, is controlled by responding to an ON command by applying high-level gate voltage for a first period, during which a current is fed into a connection point, from which it flows either through the RC-IGBT or along a different path. Based hereon, it is determined whether the RC-IGBT conducts in its forward/IGBT or reverse/diode mode, and the RC-IGBT is either driven at high or low gate voltage. Subsequent conduction mode changes may be monitored in the same way, and the gate voltage may be adjusted accordingly. A special turn-off procedure may be applied in response to an OFF command in cases where the RC-IGBT conducts in the reverse mode, wherein a high-level pulse is applied for a second period before the gate voltage goes down to turn-off level.
Abstract:
A semiconductor device which provides a small and simple design with efficient cooling. A first electrically conducting cooling element is in contact with first electrodes of semiconductor elements for forwarding a heat load from the semiconductor elements and for electrically connecting the first electrodes of the semiconductor elements to an external apparatus. A second electrically conducting cooling element is in contact with second electrodes of the semiconductor elements for forwarding a heat load from the semiconductor elements and for electrically connecting the second electrodes of the semiconductor elements to an external apparatus. The semiconductor device includes an interface which is electrically connected to gates of the semiconductor elements for external control of respective states of the semiconductor elements.
Abstract:
A semiconductor device which provides a small and simple design with efficient cooling. A first electrically conducting cooling element is in contact with first electrodes of semiconductor elements for forwarding a heat load from the semiconductor elements and for electrically connecting the first electrodes of the semiconductor elements to an external apparatus. A second electrically conducting cooling element is in contact with second electrodes of the semiconductor elements for forwarding a heat load from the semiconductor elements and for electrically connecting the second electrodes of the semiconductor elements to an external apparatus. The semiconductor device includes an interface which is electrically connected to gates of the semiconductor elements for external control of respective states of the semiconductor elements.
Abstract:
A method for producing a semiconductor device such as a RC-IGBT or a BIGT having a patterned surface wherein partial regions doped with dopants of a first conductivity type and regions doped with dopants of a second conductivity type are on a same side of a semiconductor substrate is proposed. An exemplary method includes: (a) implanting dopants of the first conductivity type and implanting dopants of the second conductivity type into the surface to be patterned; (b) locally activating dopants of the first conductivity type by locally heating the partial region of the surface to be patterned to a first temperature (e.g., between 900 and 1000° C.) using a laser beam similar to those used in laser annealing; and (c) activating the dopants of the second conductivity type by heating the substrate to a second temperature lower than the first temperature (e.g., to a temperature below 600° C.). Boron is an exemplary dopant of the first conductivity type, and phosphorous is an exemplary dopant of the second conductivity type. Boron can be activated in the regions irradiated only with the laser beam, whereas phosphorus may be activated in a low temperature sintering step on the entire surface.
Abstract:
A reverse-conducting semiconductor device is disclosed with an electrically active region, which includes a freewheeling diode and an insulated gate bipolar transistor on a common wafer. Part of the wafer forms a base layer with a base layer thickness. A first layer of a first conductivity type with at least one first region and a second layer of a second conductivity type with at least one second and third region are alternately arranged on the collector side. Each region has a region area with a region width surrounded by a region border. The RC-IGBT can be configured such that the following exemplary geometrical rules are fulfilled: each third region area is an area, in which any two first regions have a distance bigger (i.e., larger) than two times the base layer thickness; the at least one second region is that part of the second layer, which is not the at least one third region; the at least one third region is arranged in the central part of the active region in such a way that there is a minimum distance between the third region border to the active region border of at least once the base layer thickness; the sum of the areas of the at least one third region is between 10 and 30% of the active region; and each first region width is smaller than the base layer thickness.
Abstract:
In an insulated gate bipolar transistor, an improved safe operating area capability is achieved according to the invention by a two-fold base region comprising a first base region (81), which is disposed in the channel region (7) so that it encompasses the one or more source regions (6), but does not adjoin the second main surface underneath the gate oxide layer (41), and a second base region (82) is disposed in the semiconductor substrate (2) underneath the base contact area (821) so that it partially overlaps with the channel region (7) and with the first base region (81).
Abstract:
The invention relates to a manufacturing method for an insulated gate semiconductor device cell, comprising the steps of forming a cell window (3) in a layered structure that is located on top of a semiconductor substrate (1), forming at least one process mask that partially covers the cell window (3). In forming the cell window (3), at least one strip (41, 42) of the layered structure is left to remain inside the cell window (3) and at least one strip (41, 42) is used to serve as an edge for the at least one process mask (51, 52).The invention further relates to an insulated gate semiconductor device, comprising a semiconductor substrate (1) having an essentially planar top surface and an insulated gate formed on the top surface by a layered structure (2) that comprises at least one electrically insulating layer (22), wherein at least one strip (41, 42) of the layered structure (2) is disposed on a third area of the top surface between an edge of the insulated gate and a first main contact (6).
Abstract:
A maximum-punch-through semiconductor device such as an insulated gate bipolar transistor (IGBT) or a diode, and a method for producing same are disclosed. The MPT semiconductor device can include at least a two-layer structure having an emitter metallization, a channel region, a base layer with a predetermined doping concentration ND, a buffer layer and a collector metallization. A thickness W of the base layer can be determined by: W = V bd + V pt 4010 kV cm - 5 / 8 * ( N D ) 1 / 8 wherein a punch-through voltage Vpt of the semiconductor device is between 70% and 99% of a break down voltage Vbd of the semiconductor device, and wherein the thickness W is a minimum thickness of the base layer between a junction to the channel region and the buffer layer.
Abstract translation:公开了诸如绝缘栅双极晶体管(IGBT)或二极管的最大穿通半导体器件及其制造方法。 MPT半导体器件可以包括具有发射极金属化的至少两层结构,沟道区,具有预定掺杂浓度ND的基极层,缓冲层和集电极金属化。 基底层的厚度W可以通过以下公式确定:W = V bd + V pt 4010注册kV电容cm -5 / 8 *(ND)1/8其中半导体器件的穿通电压Vpt在 70%和99%的半导体器件的击穿电压Vbd,并且其中厚度W是在结到通道区域与缓冲层之间的基底层的最小厚度。