摘要:
Disclosed herein is a printed circuit board with an embedded thin-film capacitor, and a method of manufacturing the same.Specifically, the present invention relates to a printed circuit board with an embedded thin-film capacitor, comprising a lower electrode formed on an insulating substrate; an amorphous paraelectric film formed on the lower electrode; a metal seed layer formed on the paraelectric film; and an upper electrode formed on the metal seed layer and having a surface roughness (Ra) of more than 300 nm; anda method of manufacturing a printed circuit board with an embedded thin-film capacitor, comprising forming a lower electrode on an insulating substrate; forming an amorphous paraelectric film on the lower electrode, using a low-temperature film formation process; forming a metal seed layer on the paraelectric film; and forming an upper electrode having a surface roughness (Ra) of more than 300 nm on the metal seed layer, using an electroplating method.
摘要:
There is provided a multi-layered ceramic board and a method of manufacturing the same. A multi-layered ceramic board according to an aspect of the invention may include: an internal layer having a plurality of first dielectric sheets laminated, each of the first dielectric sheets prepared by mixing glass powder with a predetermined amount of alumina powder; and an external layer having at least one second dielectric sheet laminated on the surface of the internal layer, the second dielectric sheet prepared by mixing glass powder with alumina powder in a smaller amount than the first dielectric sheet, wherein via hole conductors and internal electrodes provided in the internal layer are electrically connected to a surface electrode provided on the surface of the external layer, and the internal layer, the external layer, the via hole conductors, the internal layer, and the surface electrode are fired at a predetermined temperature.
摘要:
Disclosed is a method of manufacturing a multilayer ceramic substrate. The method includes providing a plurality of ceramic blocks, each including a ceramic laminate having a first surface and a second surface and having a laminated structure of a plurality of ceramic green sheets containing a glass ceramic component, and a first bonding ceramic green sheet including a glass component and disposed on a surface of the first and second surfaces of the ceramic laminate, which is to contact another ceramic laminate, firing the plurality of ceramic blocks, laminating the plurality of fired ceramic blocks such that the first bonding ceramic green sheets of the adjacent ceramic blocks face each other, and bonding the plurality of ceramic blocks using the glass component of the first bonding ceramic green sheets.
摘要:
There are provided a method of manufacturing a ceramic sintered body. A method of manufacturing a ceramic sintered body according to one aspect of the invention may include: preparing at least one ceramic sheet having first ceramic particles and glass particles; preparing at least one constraining sheet having second ceramic particles having a smaller particle size than the glass particles and the first ceramic particles; forming a ceramic laminate by alternating the ceramic sheet and the constraining sheet while the ceramic sheet and the constraining sheet are in contact with each other; and sintering the ceramic laminate so that components, which do not react with the first ceramic particles, from the glass particle are moved into the constraining sheet to sinter the constraining sheet when the ceramic sheet is sintered.
摘要:
There are provided a method of manufacturing a ceramic sintered body. A method of manufacturing a ceramic sintered body according to one aspect of the invention may include: preparing at least one ceramic sheet having first ceramic particles and glass particles; preparing at least one constraining sheet having second ceramic particles having a smaller particle size than the glass particles and the first ceramic particles; forming a ceramic laminate by alternating the ceramic sheet and the constraining sheet while the ceramic sheet and the constraining sheet are in contact with each other; and sintering the ceramic laminate so that components, which do not react with the first ceramic particles, from the glass particle are moved into the constraining sheet to sinter the constraining sheet when the ceramic sheet is sintered.
摘要:
Disclosed herein is a printed circuit board with an embedded thin-film capacitor, and a method of manufacturing the same.Specifically, the present invention relates to a printed circuit board with an embedded thin-film capacitor, comprising a lower electrode formed on an insulating substrate; an amorphous paraelectric film formed on the lower electrode; a metal seed layer formed on the paraelectric film; and an upper electrode formed on the metal seed layer and having a surface roughness (Ra) of more than 300 nm; and a method of manufacturing a printed circuit board with an embedded thin-film capacitor, comprising forming a lower electrode on an insulating substrate; forming an amorphous paraelectric film on the lower electrode, using a low-temperature film formation process; forming a metal seed layer on the paraelectric film; and forming an upper electrode having a surface roughness (Ra) of more than 300 nm on the metal seed layer, using an electroplating method.
摘要:
Disclosed herein is a printed circuit board with an embedded thin-film capacitor, and a method of manufacturing the same.Specifically, the present invention relates to a printed circuit board with an embedded thin-film capacitor, comprising a lower electrode formed on an insulating substrate; an amorphous paraelectric film formed on the lower electrode; a metal seed layer formed on the paraelectric film; and an upper electrode formed on the metal seed layer and having a surface roughness (Ra) of more than 300 nm; anda method of manufacturing a printed circuit board with an embedded thin-film capacitor, comprising forming a lower electrode on an insulating substrate; forming an amorphous paraelectric film on the lower electrode, using a low-temperature film formation process; forming a metal seed layer on the paraelectric film; and forming an upper electrode having a surface roughness (Ra) of more than 300 nm on the metal seed layer, using an electroplating method.