Abstract:
A miniaturized transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A transistor having a large amount of on-state current is provided. A semiconductor device including the transistor is provided. A semiconductor device with high integration is provided. A novel capacitor is provided. The capacitor includes a first conductor, a second conductor, and an insulator. The first conductor includes a region overlapping with the second conductor with the insulator provided therebetween. The first conductor includes tungsten and silicon. The insulator includes a silicon oxide film that is formed by oxidizing the first conductor.
Abstract:
A dielectric includes a composite oxide. The composite oxide has composition represented by CexAl1-xOk and is amorphous. In the composition represented by CexAl1-xOk, a requirement 0.400≤x
Abstract:
LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
Abstract:
A first paste film containing a metal powder and non-vitreous inorganic oxide is formed on a glass ceramic green sheet, and a second paste film containing a metal powder is formed on the first paste film to cover at least the edge portion of the first paste film. Then the glass ceramic green sheet and the first and second paste films are fired. As a result, a surface electrode is obtained, and then a plating layer is formed on the surface electrode. The second paste film contains less non-vitreous inorganic oxide than the first paste film and the abundance ratio of the non-vitreous inorganic oxide in the surface electrode is lower in a region bordering the plating layer than in a region bordering the glass ceramic layer at least in an edge portion of the surface electrode.
Abstract:
A composite laminated ceramic electronic component that includes co-fired low dielectric-constant ceramic layers and high dielectric-constant ceramic layers. The low dielectric-constant ceramic layers and the high dielectric-constant ceramic layers are each composed of a glass ceramic containing: a first ceramic composed of MgAl2O4 and/or Mg2SiO4; a second ceramic composed of BaO, RE2O3 (where RE is a rare-earth element), and TiO2; glass containing each of 44.0 to 69.0 weight % of RO (where R is an alkaline-earth metal), 14.2 to 30.0 weight % of SiO2, 10.0 to 20.0 weight % of B2O3, 0.5 to 4.0 weight % of Al2O3, 0.3 to 7.5 weight % of Li2O, and 0.1 to 5.5 weight % of MgO; and MnO. The content ratios of the glass, etc. are varied between the low dielectric-constant ceramic layers and the high dielectric-constant ceramic layers.
Abstract translation:一种复合层压陶瓷电子元件,包括共烧低介电常数陶瓷层和高介电常数陶瓷层。 低介电常数陶瓷层和高介电常数陶瓷层各自由玻璃陶瓷组成,其包含:由MgAl 2 O 4和/或Mg 2 SiO 4组成的第一陶瓷; 由BaO,RE2O3(其中RE为稀土元素)和TiO 2组成的第二陶瓷; 包含44.0至69.0重量%的RO(其中R是碱土金属),14.2至30.0重量%的SiO 2,10.0至20.0重量%的B 2 O 3,0.5至4.0重量%的Al 2 O 3,0.3至7.5重量%的玻璃 %的Li 2 O和0.1〜5.5重量%的MgO; 和MnO。 玻璃等的含量比在低介电常数陶瓷层和高介电常数陶瓷层之间变化。
Abstract:
A capacitor having a dielectric consisting of a glass layer with an alkali metal oxide content of at most 2 wt % and a thickness of at most 50 μm is provided. The capacitor includes at least two metal layers which are separated by the glass layer. The glass layer is preferably produced by a down-draw method or by an overflow down-draw fusion method.
Abstract:
Provided is a method for producing a ceramic body, which is capable of preventing the ingress of moisture into a void between a conductor and the ceramic body more effectively in the ceramic body including the conductor therein. Ingress of a supercritical fluid containing an oxide sol precursor is achieved into a void between an internal electrode layer and a ceramic laminate. After that, the oxide sol is turned into a gel, and subjected to a heat treatment, thereby filling the void between the internal electrode layer and the ceramic laminate with an oxide.
Abstract:
A method for synthesis of germanium nanoparticles in thin SiO2 films comprising: preparing a solution comprising silicon esters, germaniumtetrachloride (GeCl4) or germanium esters, methyl- or higher alcohols, and water; applying the solution to a surface of a substrate; consolidating the solution on the surface of the substrate, thereby obtaining a glass comprising silicon dioxide and germanium dioxide; selectively reducing the germanium dioxide to form germanium nanoparticles.
Abstract:
In a multilayer ceramic substrate having a built-in capacitor provided in a ceramic laminate including a plurality of ceramic layers laminated to each other, the built-in capacitor being formed of a first capacitor electrode, a second capacitor electrode, and one of the dielectric glass ceramic layers, the capacitance value of the built-in capacitor is adjusted by performing laser trimming of the first capacitor electrode. The one dielectric glass ceramic layer is made of a TiO2-based dielectric glass ceramic layer in which the amount of dielectric grains including TiO2 is about 10 percent to about 35 percent by volume.
Abstract:
There is provided a thin film capacitor and a capacitor-embedded printed board improved in leakage current characteristics. A dielectric layer is formed of a BiZnNb-based amorphous metal oxide with a predetermined dielectric constant without being heat treated at a high temperature, and metallic phase bismuth of the BiZnNb-based amorphous metal oxide is adjusted in content to attain a desired dielectric constant. Also, another dielectric layer having a different content of metallic phase bismuth may be formed. The thin film capacitor including: a first electrode; a dielectric layer including a first dielectric film formed on the first electrode, the dielectric layer comprising a BiZnNb-based amorphous metal oxide; and a second electrode formed on the dielectric layer, wherein the BiZnNb-based amorphous metal oxide contains metallic phase bismuth.