摘要:
The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
摘要:
A manufacturing method for an electron source according to the present disclosure includes steps of: (A) cutting out a chip from a block of an electron emission material, (B) fixing a first end portion of the chip to a distal end of a support needle, and (C) sharpening a second end portion of the chip. The step (A) includes forming first and second grooves which constitute first and second surfaces of the chip in the block by irradiating a surface of the block with an ion beam. The first end portion of the chip includes the first surface and the second surface with the surfaces forming an angle α of 10 to 90°. The step (B) includes forming a joint between the distal end of the support needle and the first end portion of the chip.
摘要:
The present invention provides a current-perpendicular-to-plane giant magneto-resistive element that can use a high spin polarization (β) and spin asymmetry (γ) at the interface between layers, and that has a multilayered structure for easy film thickness design. Used is a current-perpendicular-to-plane giant magneto-resistive element comprising: a substrate (11) made of an MgO substrate; and a giant magneto-resistive effect layer (17) that has at least one multilayer having first non-magnetic layers (13a), (13b), a lower ferromagnetic layer (14a), a lower Heusler alloy layer (14b), a second non-magnetic layer (15), an upper Heusler alloy layer (16b), and an upper ferromagnetic layer (16a) formed on the substrate (11).
摘要:
A rare-earth magnet according to an embodiment of the present invention comprises: a rare-earth magnet precursor including a composition of (R1(1-x)R2x)yFe(100-y-z-v-w)CozBvTMlw in which R1 comprises at least one of Nd or Pr, and R2 comprises Ce; and a diffusion metal including a composition of (LRE(100-p-q)HREp)TM2q, and diffused on the surface of the rare-earth magnet precursor, wherein the LRE in the diffusion metal can comprise light rare earth including Y, and the HRE can comprise heavy rare earth.
摘要:
A magnetoresistive effect element includes: a first ferromagnetic layer; a second ferromagnetic layer; and a non-magnetic layer provided between the first ferromagnetic layer and the second ferromagnetic layer, wherein the non-magnetic layer includes a first layer and a second layer, and wherein a lattice constant α of the first layer and a lattice constant β of the second layer satisfy a relationship of β−0.04×α≤2×α≤β+0.04 ×α.
摘要:
The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
摘要:
The present invention provides a simpler method for sharpening a tip of an emitter. In addition, the present invention provides an emitter including a nanoneedle made of a single crystal material, an emitter including a nanowire made of a single crystal material such as hafnium carbide (HfC), both of which stably emit electrons with high efficiency, and an electron gun and an electronic device using any one of these emitters. A method for manufacturing the emitter according to an embodiment of the present invention comprises processing a single crystal material in a vacuum using a focused ion beam to form an end of the single crystal material, through which electrons are to be emitted, into a tapered shape, wherein the processing is performed in an environment in which a periphery of the single crystal material fixed to a support is opened.
摘要:
The present disclosure provides: a magnetoresistive element having a large magnetoresistance change ratio (MR ratio); and a magnetic sensor, a reproducing head and a magnetic recording and reproducing device.
摘要:
The object of the present invention is to attain an unconventionally high tunnel magnetoresistance (TMR) ratio by using a barrier layer made of an MgAl2O4 type insulator material with a spinel structure. The problem can be solved by a magnetic tunnel junction in which a barrier layer is made of a cubic nonmagnetic material having a spinel structure, and both of two ferromagnetic layers that are adjacently on and below the barrier layer are made of a Co2FeAl Heusler alloy. Preferably, the nonmagnetic material is made of oxide of an Mg1-31 xAlx (0