Abstract:
A light emitting device includes a resin package and a light emitting element. The resin package includes a first lead, a second lead, and a molded body molded integrally with the first lead and the second lead. The light emitting element is provided on the resin package.
Abstract:
A method for manufacturing a circuit board constituted by a light emitting device and a mounting board includes the steps of: conveying the light emitting device onto the mounting board in a state in which a top face is chucked by a nozzle so that the nozzle and an exposed part of a first terminal part of the light emitting device are in contact; and placing the light emitting device onto the mounting board so that the first terminal part and a wiring component are in contact in a state in which the top face is chucked by the nozzle.
Abstract:
The light emitting device comprises a substrate (2), a positive electrode (6) and a negative electrode (4) formed on the substrate (2), a light emitting diode (8) connected to the positive electrode (6) and the negative electrode (4), the transparent resin (12 and 14) that covers the light emitting diode (8), a fluorescent material (16) that absorbs at least part of light emitted by the light emitting diode (8) and converts it to light of longer wavelength, and the lens that changes the direction of light emission from the light emitting diode (8) and/or the fluorescent material (16). The resin (12 and 14) includes the fluorescent material (16) and is formed so as to constitute the lens of substantially semi-cylindrical shape, and the fluorescent material (16) included in the resin (12 and 14) is distributed with a higher concentration in a region near the surface of the light emitting diode (8) than in a region near the surface of the portion that constitutes the lens.
Abstract:
A planar light source includes: a support member; a light guide member disposed on the support member and having a light source positioning part; and a light source disposed on the support member while being in the light source positioning part of the light guide member. The support member includes: an insulation base having a first face positioned closer to the light source and a second face positioned opposite the first face, a first conductive layer disposed on the first face of the insulation base and electrically connected to the light source, an adhesive layer disposed on and in contact with the first face of the insulation base and the first conductive layer, and a light reflecting sheet disposed on the adhesive layer.
Abstract:
A surface light source includes: a light guide plate having an upper surface and a lower surface located opposite the upper surface, and including at least one through hole extending from the upper surface to the lower surface; a wiring substrate located on a lower surface side of the light guide plate and including a wiring layer; and at least one light source including a light-emitting element electrically connected to the wiring layer of the wiring substrate. The light source is located inside the through hole. The upper surface of the light guide plate has a first region including a plurality of depressed portions.
Abstract:
A light emitting module includes a light guiding plate being light-transmissive and having a first main surface being as a light exiting surface and a second main surface positioned opposite to the first main surface; a light emitting element disposed at the second main surface and configured to emit light toward the light guiding plate; an optical function part being greater in size than a light emitting surface of the light emitting element, the optical function part being disposed in the first main surface so as to correspond to an optical axis of the light emitting element; and a light-cutting scattering layer disposed on a first main surface side of the light guiding plate so as to correspond to the optical axis of the light emitting element. The light-cutting scattering layer covers the optical function part as seen in a plan view.
Abstract:
A light-emitting device includes a wiring board, a plurality of light-emitting elements disposed on the wiring board, a light-reflecting member covering a lateral surface of each of the plurality of light-emitting elements, a plurality of light-transmitting layers each located above an emission surface of a corresponding one of the plurality of light-emitting elements, a plurality of light-reflecting layers disposed on the plurality of light-transmitting layers, respectively, a light-diffusing layer disposed above the plurality of light-reflecting layers and the light-reflecting member, and a low-refractive-index layer located between the light-reflecting member and the light-diffusing layer, around each pair of one of the plurality of light-transmitting layers and one of the light-reflecting layers, and having a refractive index lower than that of the plurality of light-transmitting layers. Each of the plurality of light-reflecting layer has a width in a cross-sectional view thereof which is equal to or greater than that of a corresponding one of the plurality of light-transmitting layers.
Abstract:
A display device includes a light-emitting module and a light-diffusing sheet stacked body. The light-emitting module includes at least one light guide plate including an upper surface and a lower surface, and light sources disposed at the lower surface side of the light guide plate. The light-diffusing sheet stacked body includes a first light-diffusing sheet disposed on the light guide plate, a second light-diffusing sheet disposed on the first light-diffusing sheet, and a third light-diffusing sheet disposed on the second light-diffusing sheet. The first light-diffusing sheet includes first protrusions at an upper surface side thereof. The second light-diffusing sheet includes second protrusions at an upper surface side thereof. The third light-diffusing sheet includes third protrusions at an upper surface side thereof. A shape of the third protrusion may be different from a shape of the first protrusions and/or a shape of the second protrusions.
Abstract:
A light emitting module includes: a lightguide plate having an upper surface and a lower surface opposite to the upper surface, the upper surface including a first hole; a light emitting element on a lower surface side of the lightguide plate, the light emitting element facing the first hole; and a reflective resin layer, wherein the first hole includes a first portion and a second portion, the first portion includes a first lateral surface sloping with respect to the upper surface, the second portion has a second lateral surface sloping with respect to the upper surface, the second lateral surface being present between an opening in the upper surface and the first lateral surface of the first portion, and the reflective resin layer is located in the first portion of the first hole.
Abstract:
A method of manufacturing a light emitting module according to the present disclosure includes: preparing a light guide plate that comprises a first main surface serving as a light-emitting surface and a second main surface opposite to the first main surface; respectively providing light emitting elements on the second main surface so as to correspond to each of a plurality of optically functional portions provided on the first main surface of the light guide plate; and forming wires electrically connecting the plurality of light emitting elements.