Abstract:
A subsystem configured to encode an RGBA8 data stream assembles sequences of four-byte groups from the data stream. The subsystem decorrelates the red and blue channels, and computes a difference between each four-byte group and an anchor value. The anchor is encoded at full value. The subsystem then assigns each group a five-bit header based on the number and location of non-zero bytes and on the data content of the non-zero bytes within the group. The subsystem favors zero valued bytes. Thus, when a group includes only zero valued bytes, the header is sufficient to encode the group; no data bits are necessary. Further, two successive groups of zero-valued bytes may be encoded as a single header with no data bits, achieving further data reduction. Finally, the subsystem concatenates all the headers with associated data to yield the source data stream compressed to some ratio, e.g. four-to-one.
Abstract:
One embodiment of the present invention includes techniques for rasterizing primitives that include edges shared between paths. For each edge, a rasterizer unit selects and applies a sample rule from multiple sample rules. If the edge is shared, then the selected sample rule causes each group of coverage samples associated with a single color sample to be considered as either fully inside or fully outside the edge. Consequently, conflation artifacts caused when the number of coverage samples per pixel exceeds the number of color samples per pixel may be reduced. In prior-art techniques, reducing such conflation artifacts typically involves increasing the number of color samples per pixel to equal the number of coverage samples per pixel. Advantageously, the disclosed techniques enable rendering using algorithms that reduce the ratio of color to coverage samples, thereby decreasing memory consumption and memory bandwidth use, without causing conflation artifacts associated with shared edges.
Abstract:
A method of binding graphics resources is provided that includes: (1) identifying graphics resources for binding, (2) generating a bind group for the graphics resources, (3) organizing the bind group into a bind group memory using a bind group layout and (4) providing bind group control for processing of the bind group. A method of organizing graphics resources and a resource organizing unit are also provided.
Abstract:
A graphics processing system includes a central processing unit that processes a cubic Bezier curve corresponding to a filled cubic Bezier path. Additionally, the graphics processing system includes a cubic preprocessor coupled to the central processing unit that formats the cubic Bezier curve to provide a formatted cubic Bezier curve having quadrilateral control points corresponding to a mathematically simple cubic curve. The graphics processing system further includes a graphics processing unit coupled to the cubic preprocessor that employs the formatted cubic Bezier curve in rendering the filled cubic Bezier path. A rendering unit and a display cubic Bezier path filling method are also provided.
Abstract:
A method for compiling a shader for execution by a graphics processor. The method comprises selecting a shader for execution. A key is computed for the selected shader. A memory is searched for a copy of the computed key. A shader binary stored in the memory is passed to the graphics processor for execution if the copy of the computed key is located in the memory. Otherwise, the shader is compiled to produce the shader binary for execution by the graphics processor and storing the shader binary in the memory. The shader binary is associated with the computed key and the copy of the computed key.
Abstract:
In one embodiment of the present invention a driver configures a graphics pipeline implemented in a cache tiling architecture to perform dynamically-defined multi-pass rendering sequences. In operation, based on sequence-specific configuration data, the driver determines an optimized tile size and, for each pixel in each pass, the set of pixels in each previous pass that influence the processing of the pixel. The driver then configures the graphics pipeline to perform per-tile rendering operations in a region that is translated by a pass-specific offset backward—vertically and/or horizontally—along a tiled caching traversal line. Notably, the offset ensures that the required pixel data from previous passes is available. The driver further configures the graphics pipeline to store the rendered data in cache lines. Advantageously, the disclosed approach exploits the efficiencies inherent in cache tiling architecture while honoring highly configurable data dependencies between passes in multi-pass rendering sequences.
Abstract:
One embodiment of the present invention sets forth a technique for managing graphics processing resources in a tile-based architecture. The technique includes storing a release packet associated with a graphics processing resource in a buffer and initiating a replay of graphics primitives stored in the buffer and associated with the graphics processing resource. The technique further includes, for each tile included in a plurality of tiles and processed during the replay, reading the release packet and determining whether the tile is a last tile processed during the replay. The technique further includes determining not to transmit the release packet to a screen-space pipeline and continuing to read graphics data stored in the buffer if the tile is not the last tile to be processed during the replay, or transmitting the release packet to the screen-space pipeline if the tile is the last tile to be processed during the replay.
Abstract:
A graphics processing pipeline within a parallel processing unit (PPU) is configured to perform path rendering by generating a collection of graphics primitives that represent each path to be rendered. The graphics processing pipeline determines the coverage of each primitive at a number of stencil sample locations within each different pixel. Then, the graphics processing pipeline reduces the number of stencil samples down to a smaller number of color samples, for each pixel. The graphics processing pipeline is configured to modulate a given color sample associated with a given pixel based on the color values of any graphics primitives that cover the stencil samples from which the color sample was reduced. The final color of the pixel is determined by downsampling the color samples associated with the pixel.
Abstract:
A raster operations (ROP) unit is configured to compress stencil values included in a stencil buffer. The ROP unit divides the stencil values into groups, subdivides each group into two halves, and selects an anchor value for each half. If the difference between each of the stencil values and the corresponding anchor lies within an offset range, and the difference between the two anchors lies within a delta range, then the group is compressible. For a compressible group, the ROP unit encodes the anchor value, offsets from anchors, and an anchor delta. This encoding enables the ROP unit to operate on the compressed group instead of the uncompressed stencil values, reducing the number of memory and computational operations associated with the stencil values. Consequently, the ROP unit reduces memory bandwidth use, reduces power consumption, and increases rendering rate compared to conventional ROP units that implement less flexible compression techniques.
Abstract:
One embodiment of the present invention enables threads executing on a processor to locally generate and execute work within that processor by way of work queues and command blocks. A device driver, as an initialization procedure for establishing memory objects that enable the threads to locally generate and execute work, generates a work queue, and sets a GP_GET pointer of the work queue to the first entry in the work queue. The device driver also, during the initialization procedure, sets a GP_PUT pointer of the work queue to the last free entry included in the work queue, thereby establishing a range of entries in the work queue into which new work generated by the threads can be loaded and subsequently executed by the processor. The threads then populate command blocks with generated work and point entries in the work queue to the command blocks to effect processor execution of the work stored in the command blocks.