Abstract:
The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
Abstract:
The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
Abstract:
The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
Abstract:
Methods for non-invasive prenatal paternity testing are disclosed herein. The method uses genetic measurements made on plasma taken from a pregnant mother, along with genetic measurements of the alleged father, and genetic measurements of the mother, to determine whether or not the alleged father is the biological father of the fetus. This is accomplished by way of an informatics based method that can compare the genetic fingerprint of the fetal DNA found in maternal plasma to the genetic fingerprint of the alleged father.
Abstract:
The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
Abstract:
The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
Abstract:
Disclosed herein is a system and method for making allele calls, and for determining the ploidy state, in one or a small set of cells, or where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed and the haplotypes are determined using expected similarities between the target genome and the knowledge of the genomes of genetically related individuals. In one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the genetic data from both parents, and possibly one or more sperm and/or sibling embryos. In another embodiment, the chromosome copy number can be determined using the same input data. In another embodiment, these determinations are made for embryo selection during IVF, for non-invasive prenatal diagnosis, or for making phenotypic predictions.
Abstract:
Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.
Abstract:
Disclosed herein are system, method, and computer program product embodiments for determining aneuploidy risk in a target sample of maternal blood or plasma based on the amount of fetal DNA. An embodiment operates by receiving known genetic data from known prenatal testing samples and genetic data for the target sample. A fetal fraction distribution is determined for the known genetic data based on gestational age and the maternal weight associated with the target sample. A model is then generated based on a fixed ratio reduction of the determined fetal fraction distribution. A fetal fraction based data likelihood for the target sample is then determined for each of the plurality of ploidy states using the generated model. An aneuploidy risk score is then outputted based on applying a Bayesian probability determination that combines each fetal fraction based data likelihood with a previously determined risk score as a conditional value.
Abstract:
Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.